簡易檢索 / 詳目顯示

研究生: 黃安琪
An-Chi Huang
論文名稱: 具電致吸收調變布拉格反射鏡之可調雷射
Wavelength Tunable Lasers with Electroabsorption Modulation Bragg Reflector
指導教授: 李三良
San-Liang Lee
口試委員: 任大為
Da-wei Ren
葉秉慧
Ping-hui Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: 半導體可調雷射量子史塔克效應自由載子效應布拉格反射鏡雷射對接再磊晶製程
外文關鍵詞: Tunable semiconductor lasers, Quantum-confined stark effect (QCSE), Free-carrier plasma effect, Distributed Bragg reflector (DBR), Butt-joint (BJ)
相關次數: 點閱:185下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文設計以及製作不同中心波長之具電致吸收調變布拉格反射鏡之可調雷射,以InGaAsP作為主動層材料,並將光致發光(Photoluminescence, PL)波長設計在1577 nm的位置,透過對接再磊晶製程在被動區成長AlInGaAs材料系統之量子井結構,為降低吸收效應,將電致吸收量子井的光致發光波長設計於1477 nm的位置。
本研究製作三種中心波長1530 nm、1550 nm與1570 nm之雷射並比較其特性。由於最接近主動層量子井的光致發光波長,波長在1570 nm之雷射擁有最佳斜率效率以及最大的輸出光功率,功率可達8.305 mA,斜率效率為0.1194 (W/A)。 波長調製方面,波長1570 nm之雷射擁有最大的調動範圍,將增益區電流固定於50 mA時,在正電流注入下可往短波長調動4 nm,在施加負偏壓時波長可往長波長調動4.1 nm。波長1550 nm之雷射,在正電流注入下往短波長調動3 nm,而施加負偏壓時波長往長波長調動2 nm。波長1530 nm之雷射,在正電流注入下往短波長調動1.92 nm,而施加負偏壓時波長往長波長調動2.16 nm。波長調製範圍有因主被動區的串聯電阻偏大而受限。在調動過程中,除模態轉換間,旁模抑制比皆可以超過30 dB。為增加光功率以達穩定輸出,本論文在雷射末端設計半導體光放大器,在增益區電流固定於20 mA下,注入SOA之電流為100 mA時有最大光功率增益,功率輸出總共提升4.04 dB。


This thesis aims to develop wavelength tunable lasers with electroabsorption modulation (EAM) based distributed Bragg reflector (DBR). The multiple-quantum-well (MQW) laser active region employs InGaAsP material system. The photoluminescence (PL) wavelength of the MQWs is 1577 nm. Then the AlInGaAs of MQW based EAM material with a PL wavelength of 1477 nm was butt-jointed with the laser active layer for using as the phase-shift and Bragg-reflector regions. We designed and compare the characteristics of tunable DBR lasers with different center wavelengths of 1530 nm, 1550 nm and 1570 nm.
Because the lasing wavelength is near the PL peak wavelength of the MQW active section, the 1570 nm laser has the best slope efficiency and the maximum output optical power. In terms of wavelength tuning, the 1570 nm laser also has the best tuning characteristics when both applying forward bias and reverse bias on DBR section. The sidemode suppression ratio (SMSR) can maintain at over 30 dB except at the wavelength tuning transitions, but the tuning range was limited due to the large series resistance at both active and passive sections. In order to increase the optical power to achieve stable output, the semiconductor optical amplifier (SOA) is designed and placed at the output end of the laser. When a current is applied to the laser gain section is fixed at 20 mA, the power output is increased by 4.04 dB while the current of SOA is 100 mA.

摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 研究動機 1 1-1 研究動機 1 1-2 可調式雷射簡介 2 1-3 具電致吸收調變布拉格反射鏡之可調式雷射簡介 4 1-4 研究方向 6 1-5 論文架構 7 第二章 元件基本理論與材料設計 8 2-1 具電致吸收調變布拉格反射鏡之可調式雷射原理 8 2-1-1一般型布拉格反射鏡雷射 8 2-1-2 具電致吸收調變布拉格反射鏡之可調式雷射 11 2-2 電致吸收調變器之吸收與折射率變化 13 2-2-1 Franz-Keldysh 效應與量子侷限史塔克效應 13 2-2-2電致吸收調變器之吸收與折射率變化 14 2-3 半導體光放大器 15 2-4 對接法結構磊晶介紹 17 2-5 元件材料設計 18 第三章 元件光罩設計與製程流程 19 3-1 光罩設計 20 3-2 製程流程 22 3-3 製程結果與討論 31 第四章 元件特性量測 35 4-1 雷射基礎特性量測 35 4-1-1 雷射光功率-電流-電壓量測 35 4-1-2 輸出波長與旁模抑制比量測 38 4-2 元件被動區光功率-電流-電壓量測 42 4-3 元件波長調動特性量測 44 4-3-1 中心波長1530 nm雷射之波長調動特性量測 44 4-3-2 中心波長1550 nm雷射之波長調動特性量測 47 4-3-3 中心波長1570 nm雷射之波長調動特性量測 49 4-4 半導體光放大器功率量測 52 第五章 結論 58 5-1 成果與討論 58 5-2 未來研究方向 60 參考文獻 61 附錄A 電光效應與折射率變化 65

[1] C. V.Poulton et al., “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091 (2017).
[2] C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[3] T. R. Chen, B. Chang, L. C. Chiu, K. L. Yu, S. Margalit, A. Yariv, “Carrier leakage and temperature dependence of InGaAsP lasers,” Applied Physics Letters 43.3 (1983): 217-218
[4] L. A. Coldren, and S. W. Corzine, Diode lasers and photonic integrated circuits, John Wiley and Sons, NY, 1995.
[5] 盧廷昌, 王興宗, 「半導體雷射導論」,五南圖書出版公司,2008年9月。
[6] D. Zhou, S. Liang, L. Zhao, H. Zhu, and W. Wang, “High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers,” Opt. Express 25(3), 2341–2346 (2017).
[7] 張安裕, 「設計與製作具主動式布拉格反射鏡之可調雷射」,碩士論文,國立台灣科技大學,台北(2013)。
[8] D. Chekulaev, V. Garber, and A. Kaplan, “Free carrier plasma optical response and dynamics in strongly pumped silicon nanopillars,” Journal of Applied Physics 113, 143101 (2013).
[9] B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[10] C. H. Henry, R. A. Logan, F. R. Merritt and J. P. Luango, “The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers,” IEEE J. Quantum Electron., vol. QE-19, no. 6, pp. 947-952, 1983.
[11] J. S. Weiner, D. A. B. Miller, and D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined stark effect in quantum wells,” Appl. Phys. Lett., vol. 50, pp. 842–844, 1987.
[12] R. A. Soref and B. R. Bennett, “ Kramers-Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1986)
[13] J. Park, W.-P. Huang and X. Li, “Investigation of semiconductor optical amplifier integrated with DBR laser for high saturation power and fast gain dynamics,” IEEE J. Quantum Electron., vol. 40, no. 11, pp. 1540-1546, Nov. 2004.
[14] 黃正鈞, 「設計及製作不同光柵的分佈反饋半導體雷射及其與電致吸收調變器之積體化」,碩士論文,國立台灣科技大學,台北(2016)
[15] J. J. M. Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, R. G. Broeke and M. K. Smit, “MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt joint los,” Proc. IEEE/LEOS Symp. Benelux Chapter, pp. 245-248, 2001-Dec.
[16] G. Roesel, F. Köhler, R. Meyer , M.-C. Amann , “Optimization of type-II heterostructures for the tuning region in tunable laser diodes,” Semicond. Sci. Technol., 325 – 329
[17] N. P. Caponio, M. Goano, I. Maio, M. Meliga, G. P. Bava, G. Destefanis, et al., “Analysis and design criteria of three-section DBR tunable lasers,” IEEE J. Select. Areas Commun., vol. 8, no. 6, pp. 1203-1213, Aug. 1990.
[18] H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Murai, K. Yamada, et al., “EAM-integrated DFB laser modules with more than 40-GHz bandwidth,” IEEE Photon. Technol. Lett., vol. 13, pp. 954-956, Sept. 2001.
[19] 王鈺翔, 「具部分式光柵之高速直調雷射的製作與特性分析」,碩士論文,國立台灣科技大學,台北(2018)
[20] M. Smit et al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[21] H. Debregeas-Sillard, C. Fortin, A. Accard, O. Drisse, E. Derouin, F. Pommereau, et al., “Nonlinear effects analysis in DBR lasers: Applications to DBR-SOA and new double bragg DBR,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1142-1150, Sep./Oct. 2007.
[22] Paulette Hatem Hanna Iskander, “Chemical sensors based on GaN heterostructures,” Bachelor thesis, Universitat Ulm, Germany(2017)
[23] M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam and A. J. Seeds, “Fast tunable InGaAsP DBR laser using quantum-confined Stark-effect-induced refractive index change,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1112-1121, Sept./Oct. 2007.
[24] T. L. Koch, U. Koren and B. I. Miller, “ High performance tunable 1.5 μm InGaAs/InGaAsP multiple quantum well distributed Bragg reflector lasers ,” Appl. Phys. Lett., vol. 53, pp. 1036-1038, 1988.
[25] D. Zhou et al. , “10 Gb/s data transmissions using a widely tunable directly modulated InGaAlAs/InGaAsP DBR laser ,” IEEE Photon. Technol. Lett., vol. 30, no. 22, pp. 1937-1940, Nov. 2018.
[26] F. Delorme, S. Slempkes, G. Alibert, B. Rose and J. Brandon , “Butt-jointed DBR laser with 15 nm tunability grown in three MOVPE steps ,” Electron. Lett., vol. 31, no. 15, pp. 1244-1245, 1995.

QR CODE