簡易檢索 / 詳目顯示

研究生: Kukuh Wicaksono
Kukuh Wicaksono
論文名稱: Effect of NH2 Doping in Carbon Dots on Singlet Oxygen Generation
Effect of NH2 Doping in Carbon Dots on Singlet Oxygen Generation
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
鄭智嘉
Chih Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 52
中文關鍵詞: Carbon DotsSinglet OxygenAnthracene
外文關鍵詞: Carbon Dots, Singlet Oxygen, Anthracene
相關次數: 點閱:271下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

比例變化的碳點通過水熱過程產生具NH2。透射電子顯微鏡圖像和X 射線衍射分
析給出了碳點具有量子點尺寸和無定形結構的信息。
紅外吸收光譜和X 射線光電子能譜分析證實,碳點具有石墨和脂肪族碳以及羧基
和胺基團的官能團。紫外-可見光譜和熒光光譜表明,碳點在340nm 處有一個激發
帶,再440nm 處有一個發射帶。由於參雜NH2 的碳點具有優異的強度和量子產率,
量子產量隨著NH2 含量的增加而增加。另外,單線態氧產生從碳點被檢驗出來。


Carbon dots with variation of NH2 ratio doped was produced by hydrothermal
procedure. Transmission electron microscopic images and X-ray diffraction analyses
gave the information that carbon dots had a quantum dot size and the amorphous
structure. Infrared absorption spectra and X-ray photoelectron spectroscopic analyses
confirmed that carbon dots had functional groups of graphitic and aliphatic carbon and
carboxyl and amine groups. Ultraviolet-visible and fluorescence spectra showed that
carbon dots had an excitation band at 340 nm and an emission band at 440 nm. Carbon
dots had excellent intensities and quantum yields due to doped NH2. Quantum yields
increased with increasing NH2 content. Additionally, singlet oxygen generation from
carbon dots was examined.

Abstract .......................................................................................................................... i 摘要 ............................................................................................................................... ii Table of Contents ........................................................................................................... iii List of Figures ................................................................................................................ v List of Tables ................................................................................................................. viii Chapter 1-General Introduction ..................................................................................... 1 1.1. Introduction ............................................................................................................ 1 1.1.1 Photodynamic therapy (PDT) ............................................................................... 1 1.1.2 Carbon dots ........................................................................................................... 4 1.1.3 Singlet Oxygen ..................................................................................................... 7 1.1.4 Anthracene ............................................................................................................ 9 1.2. Motivation and Objective of the work .................................................................... 10 Chapter 2-Experimental Section .................................................................................... 11 2.1 Material and Reagents ............................................................................................. 11 2.2 Instruments .............................................................................................................. 11 2.3 Experimental procedure ........................................................................................... 12 2.3.1 Synthesis of carbon dots ....................................................................................... 12 2.3.2 Measurement of fluorescence quantum yield ....................................................... 13 2.2.3 Detection of singlet oxygen generation ............................................................... 14 Chapter 3-Results and Discussion ................................................................................. 17 3.1 Characterization of carbon dots ............................................................................... 17 3.1.1 UV-vis absorption spectra .................................................................................... 17 3.1.2 Fluorescence spectra ............................................................................................. 18 3.1.3 Infrared absorption spectra ................................................................................... 25 3.1.4 HRTEM images .................................................................................................... 26 3.1.5 X-Ray Diffraction (XRD) analysis ....................................................................... 27 3.1.6 X-Ray Photoelectron Spectroscopy (XPS) analysis ............................................. 28 3.2 Quantum yield measurement ................................................................................... 33 3.3 Singlet oxygen generation ....................................................................................... 36 3.3.1 Timescan Measurement ........................................................................................ 36 3.3.2 Singlet Oxygen Generation .................................................................................. 38 Chapter 4-Summary and Conclusion ............................................................................. 46 List of References .......................................................................................................... 48

1. D. E. Dolmans, D. Fukumura, R. K. Jain, Photodynamic therapy for cancer. Nature
Reviews Cancer, 2003, 3 (5): 380-387.
2. M. B. Vrouenraets, G. W. Visser, G. B. Snow, G. A. van Dongen, Basic principles
applications in oncology and improved selectivity of photodynamic therapy.
Anticancer Research, 2003, 23 (1B): 505-522.
3. E. F. G. Dickson, R. L. Goyan, R. H. Pottier, New directions in photodynamic therapy.
Cellular and Molecular Biology, 2002, 48(8): 939-954.
4. P.G. Calzavara-Pinton, M. Venturini, R. Sala, Photodynamic therapy: update 2006.
Part 1: photochemistry and photobiology. J Eur Acad Dermatol Venereol, 2007,
21:293-302.
5. K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich, Photophysics and
photochemistry of photodynamic therapy: fundamental aspects. Lasers Med. Sci.,
2009, 24:259-68.
6. A. E. O’Connor, W. M. Gallagher, A. T. Byrne, Porphyrin and nonporphyrin
photosensitizers in oncology: preclinical and clinical advances in photodynamic
therapy. Photochem Photobiol, 2009, 85:1053-1074.
7. V. P. Torchilin, Targeted pharmaceutical nanocarriers for cancer therapy and
imaging. AAPS J, 2007, 9: E128-147.
8. C. Sun, O. Veiseh, J. Gunn, et al., In vivo MRI detection of gliomas by chlorotoxinconjugated
superparamagnetic nanoprobes. Small, 2008, 4: 372-379.
9. S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B.
Yang, Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and
Bioimaging. Angew. Chem., Int. Ed, 2013, 52, 3953−3957.
10. Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li, T. Yu, Carbon-
Based Dots Co-Doped with Nitrogen and Sulfur for High Quantum Yield and
Excitation-Independent Emission. Angew. Chem., Int. Ed, 2013, 52, 7800−7804.
11. S. Y. Lim, W. Shen, Z. Gao, Carbon Quantum Dots and Their Applications. Chem.
Soc. Rev. 2015, 44, 362−381.
12. J. Liu, Y. Liu, N. Y. Liu, Y. Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J.
Zhong, Z. H. Kang, Metal-Free Efficient Photocatalyst for Stable Visible Water
Splitting Via a Two-Electron Pathway. Science 2015, 347, 970−974.
13. S. Khan, A. Gupta, N. C. Verma, C. K. Nandi, Time-Resolved Emission Reveals
Ensemble of Emissive States as the Origin of Multicolor Fluorescence in Carbon Dots.
Nano Lett. 2015, 15, 8300−8305.
14. A. Sharma, T. Gadly, A. Gupta, A. Ballal, S. K. Ghosh, M. Kumbhakar, Origin of
Excitation Dependent Fluorescence in Carbon Nanodots. J. Phys. Chem. Lett. 2016, 7,
3695−3702.
15. A. Sciortino, E. Marino, B. v. Dam, P. Schall, M. Cannas, F. Messina,
Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots. J. Phys.
Chem. Lett. 2016, 7, 3419−3423.
16. X. L. Feng, J. S. Wu, M. Ai, W. Pisula, L. J. Zhi, J. P. Rabe, K. Müllen, Triangleshaped
polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 2007, 46, 3033–
3036.
17. X. Yan, X. Cui, L.-S. Li, Synthesis of large, stable colloidal graphene quantum dots
with tunable size. J. Am. Chem. Soc.2010, 132, 5944–5945.
18. T. Zhang, Y. Zhai, H. Wang, J. Zhu, L. Xu, B. Dong, and H. Song, Facilely prepared
carbon dots and rare earth ion doped hybrid composites for ratio-metric pH sensing
and white-light emission. RSC Adv., 2016, 6, 61468–61472.
19. E. G. Nisbet and N. H. Sleep, Nature, 2001, 409, 1083.
20. M. P. Lesser, Annu. Rev. Physiol., 2006, 68, 253.
21. D. Harman, J. Gerontol., 1956, 11, 298.
22. D. Harman, Mutat. Res., DNAging, 1992, 275, 257.
23. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine. Oxford
University Press, Oxford, 4th edn., 2007.
24. K. I. Salokhiddinov, I. M. Byteva, B. M. Dzhagarov, Duration of the luminescence of
singlet oxygen in solution following pulsed laser excitation. Opt. I Spektrosk, 1979,
47, 881–886.
25. S. Nonell and S. E. Braslavsky, Time-resolved singlet oxygen detection. Methods
Enzymol, 2000, 319, 37–49.
26. B. A. Lindig, M. A. J. Rodgers, A. P. Schaap, Determination of the lifetime of singlet
oxygen in water-d2 using 9,10-anthracenedipropionic acid, a water-soluble probe. J.
Am. Chem. Soc, 1980, 102, 5590–5593.
27. A. F. Olea and F. Wilkinson, Singlet oxygen production from excited singlet and
triplet states of anthracene derivatives in acetonitrile. J. Phys. Chem., 1995, 99, 4518-
4524.
28. T. R. Williams, S. A. Winfield and J. N. Miller, Relative fluorescence quantum yields
using a computer controlled luminescence spectrometer. Analyst, 108, 1983, 1067.
29. S. Dhami, A. J. de Mello, G. Rumbles, S. M. Bishop, D. Phillips and A. Beeby,
Phthalocyanine fluorescence at high concentration: dimers or reabsorption effect?.
Photochem. Photobiol. 61,1995, 341.
30. Y. Zhang, Y. Wang, X. Feng, F. Zhang, Y. Yang, X. Liu, Effect of reaction
temperature on structure and fluorescence properties of nitrogen-doped carbon dots.
App. Surface Science 387, 2016, 1236-1246.
31. S. Jie, T. Zhang, Y. Cai, X. Chen, S. Shng, and J. Li, Highly fluorescent N,S-co-doped
carbon dots: synthesis and multiple applications. New J. Chem., 2017, 41, 11125.
32. A. Mohsen, S. Dehfuly, D. Fatehi, R. Shabani, M. Koruji, Efficient functionalization
of gold nanoparticles using cysteine conjugated protoporphyrin IX for singlet oxygen
production in vitro. RSC Adv. 5, 2015, 104621.
33. Y. Song, S. Zhu, S. Zhang, Y. Fu, L. Wang, X. Zhao, B. Yang, Investigation from
chemical structure to photoluminescent mechanism: a type of carbon dots from the
pyrolysis of citric acid and an amine. J. Mater. Chem. C 3, 2015, 5976–5984.
34. T. T. Meiling, P. J. Cywinski, and I. Bald, White carbon: fluorescent carbon
nanoparticles with tunable quantum yield in a reproducible green synthesis. Scientific
reports, 2016, 6, 28557.
35. X. Li, S. Zhang, S.A. Kulinich, Y. Liu, H. Zeng, Engineering surface states of carbon
dots to achieve controllable luminescence for solid-luminescent composites and
sensitive Be2+detection. Sci. Rep. 4, 2014.
36. Y. Zhang, Y. H. He, P.P. Cui, X.T. Feng, L. Chen, Y.Z. Yang, X.G. Liu, Watersoluble,
nitrogen-doped fluorescent carbon dots for highly sensitive and selective
detection of Hg2+ in aqueous solution. RSC Adv. 5, 2015, 40393–40401.
37. J. Yu, N. Song, Y.K. Zhang, S.X. Zhong, A.J. Wang, J.R. Chen, Green preparation of
carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of
Hg2+and Fe3+. Sensor. Actuat B: Chem. 214, 2015, 29–35.
38. J.Briscoe, A. Marinovic, M. Sevilla, S. Dunn, and M. Titirici, Biomas-derived carbon
quantum dot sensitizers for solid-state nanostructured solar cells. Angew. Chem. Int.
Ed., 2015, 54, 4463-4468.
39. S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang,
B.Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and
bioimaging. Angew. Chem. Int. Ed. 52, 2013, 3953–3957.
40. A. Siriviriyanun, T. Imae, G. Caldero, C. Solans, Phototherapeutic functionality of
biocompatible graphene oxide/dendrimer hybrids. Colloids and Surfaces B:
Biointerfaces 121, 2014, 469-473.
41. A. Prasannan and T. Imae, One-pot synthesis of fluorescent carbon dots from orange
waste peels. Ind. Eng. Chem. Res., 2013, 52, 15673-15678.
42. D. Sun, R. Ban, P.H. Zhang, G.H. Wu, J.R. Zhang, J.J. Zhu, Hair fiber as a precursor
for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable
luminescence properties. Carbon 64, 2013, 424–434.
43. S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, A biocompatible fluorescent ink based on
water-soluble luminescent carbon nano dots. Angew. Chem. Int. Ed. 51, 2012,
12215–12218.
44. Y. Hu, J. Yang, J. Tian, L. Jia, J.S. Yu, Waste frying oil as a precursor for one-step
synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon
77, 2014, 775–782.
45. S. Li, Y. Li, J. Cao, J. Zhu, L. Fan, X. Li, Sulfur-doped graphene quantum dots as a
novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal.
Chem. 86, 2014, 10201–10207.
46. B. Shi, L. Zhang, C. Lan, J. Zhao, Y. Su, S. Zhao, One-pot green synthesis of oxygenrich
nitrogen-doped graphene quantum dots and their potential application in pHsensitive
photoluminescence and detection of mercury (II) ions. Talanta 142, 2015,
131–139.
47. D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun,
Formation mechanism and optimization of highly luminescent N-doped graphene
quantum dots. Sci. Rep. 4, 2014, 5294.
48. L. Bao, C. Liu, Z.L. Zhang, D.W. Pang, Photoluminescence-tunable carbon nanodots:
surface-state energy-gap tuning. Adv. Mater. 27, 2015, 1663–1667.
49. W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, A.M. Asiri, A.O. Al-Youbi,
X.Sun, Economical, green synthesis of fluorescent carbon nanoparticles and their use
as probes for sensitive and selective detection of mercury(II) ions. Anal. Chem. 84,
2012, 5351–5357.
50. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence
mechanism in carbon dots (graphene quantum dots, carbon nanodots, andpolymer
dots): current state and future perspective. Nano Res. 8, 2015, 355–381.

QR CODE