簡易檢索 / 詳目顯示

研究生: 金修儀
Hsiu-Yi Chin
論文名稱: 以大鼠急性肺損傷模式評估脫細胞之豬肺細胞外基質用於肺部傳輸的研究
Evaluating the Effect of Extracellular Matrix from Decellularized Porcine Lungs on Lipopolysaccharide-induced Acute Lung Injury Rats for Pulmonary Delivery
指導教授: 高震宇
Chen-Yu Kao
口試委員: 高震宇
蔡協致
李曉屏
莊依萍
羅俊民
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 132
中文關鍵詞: 急性肺損傷細胞外基質脫細胞
外文關鍵詞: acute lung injury, extracellular matrix, decellularization
相關次數: 點閱:382下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

急性肺損傷是一種具有高發病率和死亡率的嚴重臨床症候群及肺部疾病,其病理機轉主要是當肺部受損時會產生急性的發炎反應,肺泡嗜中性細胞及巨噬細胞,會釋放細胞激素召集嗜中性白血球,導致病理上出現肺泡受損、嗜中性白血球浸潤、肺間質水腫等之情形。而細胞外基質為組織萃取物是天然的生物材料,成分為多種蛋白質及醣類的結構,生物相容性高,常被作為細胞生長支架,應用在器官修復與疾病治療,是具有潛力的生物材料;因此藉由脫細胞方法製備細胞外基質以調節巨噬細胞發炎反應。
本研究利用物理和化學的脫細胞方法,去除豬肺臟的細胞並萃取細胞外基質,進行殘存細胞和藥劑分析,避免產生排斥反應,藉由細胞外基質生化特性分析和細胞抗發炎分析,最後製備出適合用於肺部傳輸之細胞外基質微奈米顆粒,進行動物發炎分析,評估細胞外基質對於治療和預防急性肺損傷之效果。
研究結果顯示,本實驗所使用之脫細胞方法,使每1mg的豬肺臟dsDNA含量低於50ng,成功將豬肺臟細胞去除,並保留了膠原蛋白含量,可成功製備成水凝膠;細胞2D及3D培養結果顯示,細胞外基質提供良好的細胞生長環境,無生物毒性且生物相容性高;細胞抗發炎實驗結果顯示,細胞外基質具有抗發炎效果;所製備之細胞外基質微奈米顆粒之粒徑大小介於222.48-878.08nm,平均粒徑為 447.39 ± 213.77nm,適合於肺部傳輸且利於巨噬細胞吞噬;動物抗發炎實驗結果顯示,細胞外基質具有抗發炎效果,有抑制及預防肺組織產生嗜中性白血球浸潤與聚集之免疫調節效果。


Acute lung injury (ALI) is a severe clinical syndrome and lung disease with high morbidity and mortality. The pathological mechanism is mainly that when the lungs are damaged, an acute inflammatory reaction will occur, and alveolar neutrophils and macrophages will release cytokines to recruit neutrophils, resulting in pathological alveolar damage and neutrophils. It appears that conditions such as neutrophil infiltration, pulmonary interstitial edema, etc. The extracellular matrix (ECM) is a native tissue extract, a structural support network comprising diverse proteins, sugars, and other components. It has high biocompatibility and is often used as a cell growth scaffold for organ repair and disease treatment. It is a potential biological material; Therefore, using the decellularized ECM regulates the inflammatory response to macrophages.
This study uses physical and chemical decellularization methods to remove cells from porcine lungs and extract the extracellular matrix. We analyzed the residual cells and drugs to avoid rejection. The extracellular matrix's biochemical characteristics and the anti-inflammation effects were also studied. The extracellular matrix hydrogel micro-nanoparticles were prepared to the size suitable for pulmonary delivery. The anti-inflammatory effects of ECM hydrogel micro-nanoparticles were evaluated to treat and prevent ALI in a rat model.
The results showed that our decellularization method successfully removes the cells from the lung tissue; the content of residual dsDNA per 1 mg of porcine lungs was less than 50ng. The resulting decellularized ECM (dECM) retains most of the ECM components, such as collagen and GAGs, and can be used to prepare ECM hydrogel. The dECM hydrogels exhibit no biotoxicity and high biocompatibility. The cell growths in ECM hydrogels were higher than the collagen control group in both 2D and 3D cell culture environments and exhibited higher anti-inflammatory ability in vitro. The results showed that the dECM hydrogel particle sizes of micro-nanoparticles ranged from 222.48 to 878.08nm. The average particle size is 447.39 ± 213.77nm, suitable for pulmonary delivery and conducive to macrophage phagocytosis. More importantly, the in vivo experiment showed that dECM hydrogel particles have great potential in treating and preventing ALI. It has the immunoregulatory effect of inhibiting and preventing neutrophil infiltration and aggregation in lung tissue.

目錄 VI 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 2 第二章 文獻回顧 3 2.1 急性肺損傷(Acute lung injury, ALI) 3 2.1.1 急性肺損傷之病因 4 2.1.2 急性肺損傷之病理機轉 5 2.1.3 急性肺損傷治療方式 7 2.2 利用在評估急性肺損傷之模式 10 2.2.1 急性肺損傷細胞膜式 10 2.2.2 急性肺損傷動物模型 12 2.3 細胞外基質 15 2.3.1 細胞外基質在抗發炎的研究 17 2.3.2 細胞外基質在肺部傳輸的研究 19 2.3.3 細胞外基質的製備方式 20 第三章 研究設計與材料方法 23 3.1 研究設計 23 3.1.1 實驗設計 23 3.1.2 實驗架構 24 3.2 實驗藥品與儀器設備 25 3.2.1 實驗藥品及材料 25 3.2.2 細胞培養之藥品試劑 27 3.2.3 實驗分析儀器設備 28 3.2.4 動物實驗之藥品試劑及設備 29 3.3 細胞外基質製備 30 3.3.1 豬肺臟清洗 30 3.3.2 脫細胞方法 31 3.3.3 凍乾 32 3.4 分析萃取後的脫細胞 32 3.4.1 DAPI染色 32 3.4.2 DNA分析 33 3.4.3 double stranded DNA(dsDNA)分析 34 3.4.4 DNA電泳 35 3.4.5殘留SDS分析 35 3.4.6 Collagen分析 36 3.4.7 sGAG分析 37 3.5 製備細胞外基質水凝膠 39 3.6 製備微奈米ECM顆粒 40 3.6.1 微奈米ECM粒徑之分析 40 3.6.2 微奈米ECM顆粒之表面觀察 40 3.7 體外測試 41 3.7.1 細胞培養 42 3.7.2 細胞毒性分析 47 3.7.3 水凝膠表面細胞培養(2D) 49 3.7.4 水凝膠細胞培養(3D) 52 3.7.5 細胞激素釋放(TNF-⍺、IL-10濃度測定) 53 3.8 動物實驗 54 3.8.1 實驗動物組別 54 3.8.2 內毒素誘導肺損傷之動物模式 57 3.8.3 內毒素誘導肺損傷之測定 58 3.9 統計學分析 (Statistical Analysis) 59 第四章 結果 60 4.1 豬肺臟脫細胞實驗分析 60 4.1.1 DAPI染色分析豬肺臟經由脫細胞實驗後的細胞殘存 60 4.1.2 dsDNA分析豬肺臟經由脫細胞實驗的dsDNA含量 61 4.1.3 DNA電泳分析豬肺臟經由脫細胞實驗後的DNA含量 64 4.1.4 分析豬肺臟經脫細胞實驗的SDS殘留含量 65 4.1.5 collagen分析豬肺臟經脫細胞實驗的膠原蛋白含量 67 4.1.6 sGAG分析豬肺臟經脫細胞實驗的糖胺聚醣含量 69 4.1.7 DLS分析豬肺臟經脫細胞實驗後的細胞外基質粒徑大小 71 4.1.8 SEM分析豬肺臟經脫細胞實驗後的細胞外基質顆粒型態 72 4.2 細胞實驗 73 4.2.1 細胞外基質粉末對於細胞毒性的MTT分析 73 4.2.2 細胞外基質水凝膠對於細胞的 Live/Dead 分析(2D) 75 4.2.3 細胞外基質水凝膠對於細胞的 Alamar Blue 分析(2D) 77 4.2.4 細胞外基質水凝膠對於細胞的Live/Dead分析(3D) 80 4.2.5 細胞外基質水凝膠對於細胞的抗發炎分析 82 4.3 動物實驗 87 4.3.1 細胞外基質顆粒在肺組織之均勻度分析 87 4.3.2 組織病理切片分析 89 4.3.3細胞外基質對於肺損傷的抗發炎分析 101 第五章 討論 104 5.1 細胞外基質性質分析 104 5.1.1 脫細胞實驗分析 104 5.1.2 dsDNA含量分析 105 5.1.3 collagen含量分析 106 5.1.4 細胞外基質微奈米顆粒分析 107 5.2 細胞外基質細胞實驗分析 108 5.2.1 細胞外基質水凝膠製備分析 108 5.2.2 細胞外基質水凝膠細胞培養分析 109 5.2.3 細胞外基質水凝膠抗發炎分析 110 5.3 細胞外基質動物實驗分析 111 5.3.1 細胞外基質微奈米顆粒造成發炎與抑制發炎之分析 113 5.3.2 細胞外基質微奈米顆粒治療發炎之分析 114 5.3.3 細胞外基質微奈米顆粒預防發炎之分析 115 第六章 總結 116 參考資料 117

1. Ramji, H.F., et al., Acute Respiratory Distress Syndrome; A Review of Recent Updates and a Glance into the Future. Diagnostics, 2023. 13(9): p. 1528.
2. Spadaro, S., et al., Biomarkers for Acute Respiratory Distress syndrome and prospects for personalised medicine. J Inflamm (Lond), 2019. 16: p. 1.
3. Hu, Q., et al., Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil Med Res, 2022. 9(1): p. 61.
4. Kaku, S., et al., Acute Respiratory Distress Syndrome: Etiology, Pathogenesis, and Summary on Management. Journal of Intensive Care Medicine, 2020. 35(8): p. 723-737.
5. Figueiredo, L.T.M., Pneumonias virais: aspectos epidemiológicos, clínicos, fisiopatológicos e tratamento. Jornal Brasileiro de Pneumologia, 2009. 35.
6. Zhong, N.S., et al., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. The Lancet, 2003. 362(9393): p. 1353-1358.
7. Ruuskanen, O., E. Lahti, L.C. Jennings, and D.R. Murdoch, Viral pneumonia. The Lancet, 2011. 377(9773): p. 1264-1275.
8. Perlman, S., Another Decade, Another Coronavirus. New England Journal of Medicine, 2020. 382(8): p. 760-762.
9. Zhang, L., S. Mei, B. Zhu, and Z. Zhao, Trends in research on acute lung injury/acute respiratory distress syndrome associated with viral pneumonia from 1992 to 2022: a 31-year bibliometric analysis. Front Med (Lausanne), 2023. 10: p. 1158519.
10. Liu, C., K. Xiao, and L. Xie, Advances in the use of exosomes for the treatment of ALI/ARDS. Frontiers in Immunology, 2022. 13.
11. Ware, L.B. and M.A. Matthay, The Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2000. 342(18): p. 1334-1349.
12. Mowery, N.T., W.T.H. Terzian, and A.C. Nelson, Acute lung injury. Current Problems in Surgery, 2020. 57(5): p. 100777.
13. Confalonieri, M., F. Salton, and F. Fabiano, Acute respiratory distress syndrome. European Respiratory Review, 2017. 26(144): p. 160116.
14. Butt, Y., A. Kurdowska, and T.C. Allen, Acute Lung Injury: A Clinical and Molecular Review. Archives of Pathology & Laboratory Medicine, 2016. 140(4): p. 345-350.
15. Derwall, M., L. Martin, and R. Rossaint, The acute respiratory distress syndrome: pathophysiology, current clinical practice, and emerging therapies. Expert Review of Respiratory Medicine, 2018. 12(12): p. 1021-1029.
16. Gropper, M.A. and J. Wiener-Kronish, The epithelium in acute lung injury/acute respiratory distress syndrome. Current Opinion in Critical Care, 2008. 14(1): p. 11-15.
17. Thompson, B.T., R.C. Chambers, and K.D. Liu, Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2017. 377(6): p. 562-572.
18. Mosaiab, T., D.C. Farr, M.J. Kiefel, and T.A. Houston, Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv Drug Deliv Rev, 2019. 151-152: p. 94-129.
19. Sung, J.C., B.L. Pulliam, and D.A. Edwards, Nanoparticles for drug delivery to the lungs. Trends Biotechnol, 2007. 25(12): p. 563-70.
20. Costa, A., et al., The formulation of nanomedicines for treating tuberculosis. Adv Drug Deliv Rev, 2016. 102: p. 102-15.
21. Shegokar, R., L. Al Shaal, and K. Mitri, Present status of nanoparticle research for treatment of tuberculosis. J Pharm Pharm Sci, 2011. 14(1): p. 100-16.
22. Muttil, P., C. Wang, and A.J. Hickey, Inhaled drug delivery for tuberculosis therapy. Pharm Res, 2009. 26(11): p. 2401-16.
23. Gairola, A., et al., Recent Developments in Drug Delivery for Treatment of Tuberculosis by Targeting Macrophages. Adv Ther (Weinh), 2022. 5(6).
24. Ashbaugh, D.G., D.B. Bigelow, T.L. Petty, and B.E. Levine, Acute respiratory distress in adults. Lancet, 1967. 2(7511): p. 319-23.
25. Petty, T.L. and D.G. Ashbaugh, The adult respiratory distress syndrome. Clinical features, factors influencing prognosis and principles of management. Chest, 1971. 60(3): p. 233-9.
26. Mokrá, D., Acute lung injury - from pathophysiology to treatment. Physiol Res, 2020. 69(Suppl 3): p. S353-s366.
27. Bernard, G.R., Acute respiratory distress syndrome: a historical perspective. Am J Respir Crit Care Med, 2005. 172(7): p. 798-806.
28. Oi-Yee Cheung, P.G., and Maxwell L. Smith, Acute Lung Injury. Practical Pulmonary Pathology: A Diagnostic Approach, 2018. 3: p. 125-146.
29. Butt, Y., A. Kurdowska, and T.C. Allen, Acute Lung Injury: A Clinical and Molecular Review. Arch Pathol Lab Med, 2016. 140(4): p. 345-50.
30. Raghavendran, K. and L.M. Napolitano, ALI and ARDS: challenges and advances. Crit Care Clin, 2011. 27(3): p. xiii-xiv.
31. Matthay, M.A. and G.A. Zimmerman, Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol, 2005. 33(4): p. 319-27.
32. Bakowitz, M., B. Bruns, and M. McCunn, Acute lung injury and the acute respiratory distress syndrome in the injured patient. Scand J Trauma Resusc Emerg Med, 2012. 20: p. 54.
33. Murray, J.F., M.A. Matthay, J.M. Luce, and M.R. Flick, An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis, 1988. 138(3): p. 720-3.
34. Manicone, A.M., Role of the pulmonary epithelium and inflammatory signals in acute lung injury. Expert Rev Clin Immunol, 2009. 5(1): p. 63-75.
35. Long, M.E., R.K. Mallampalli, and J.C. Horowitz, Pathogenesis of pneumonia and acute lung injury. Clin Sci (Lond), 2022. 136(10): p. 747-769.
36. Ragaller, M. and T. Richter, Acute lung injury and acute respiratory distress syndrome. J Emerg Trauma Shock, 2010. 3(1): p. 43-51.
37. Johnson, E.R. and M.A. Matthay, Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv, 2010. 23(4): p. 243-52.
38. Santa Cruz, R., F. Villarejo, C. Irrazabal, and A. Ciapponi, High versus low positive end‐expiratory pressure (PEEP) levels for mechanically ventilated adult patients with acute lung injury and acute respiratory distress syndrome. Cochrane Database of Systematic Reviews, 2021(3).
39. Palmer, R.M.J., D.S. Ashton, and S. Moncada, Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature, 1988. 333(6174): p. 664-666.
40. Rossaint, R., et al., Inhaled Nitric Oxide for the Adult Respiratory Distress Syndrome. New England Journal of Medicine, 1993. 328(6): p. 399-405.
41. Hsu, C.W., et al., The initial response to inhaled nitric oxide treatment for intensive care unit patients with acute respiratory distress syndrome. Respiration, 2008. 75(3): p. 288-95.
42. Beckman, J.S., et al., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences, 1990. 87(4): p. 1620-1624.
43. Haddad, I.Y., et al., Inhibition of alveolar type II cell ATP and surfactant synthesis by nitric oxide. Am J Physiol, 1996. 270(6 Pt 1): p. L898-906.
44. Beckman, J.S., et al., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A, 1990. 87(4): p. 1620-4.
45. Gebistorf, F., O. Karam, J. Wetterslev, and A. Afshari, Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database of Systematic Reviews, 2016(6).
46. Boyle, A.J., R.M. Sweeney, and D.F. McAuley, Pharmacological treatments in ARDS; a state-of-the-art update. BMC Medicine, 2013. 11(1): p. 166.
47. Standiford, T.J. and P.A. Ward, Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Translational Research, 2016. 167(1): p. 183-191.
48. Neto, A.S., et al., Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials. Annals of Intensive Care, 2012. 2(1): p. 33.
49. Hraiech, S., T. Yoshida, and L. Papazian, Balancing neuromuscular blockade versus preserved muscle activity. Current Opinion in Critical Care, 2015. 21(1): p. 26-33.
50. Zheng, Z., et al., Neuromuscular blocking agents for acute respiratory distress syndrome: an updated meta-analysis of randomized controlled trials. Respiratory Research, 2020. 21(1): p. 23.
51. Hua, Y., X. Ou, Q. Li, and T. Zhu, Neuromuscular blockers in the acute respiratory distress syndrome: A meta-analysis. PLoS One, 2020. 15(1): p. e0227664.
52. Mokra, D., J. Mokry, and I. Tonhajzerova, Anti-inflammatory treatment of meconium aspiration syndrome: Benefits and risks. Respiratory Physiology & Neurobiology, 2013. 187(1): p. 52-57.
53. Mokra, D., et al., Effects of budesonide on the lung functions, inflammation and apoptosis in a saline-lavage model of acute lung injury. J Physiol Pharmacol, 2016. 67(6): p. 919-932.
54. Kosutova, P., et al., Intravenous dexamethasone attenuated inflammation and influenced apoptosis of lung cells in an experimental model of acute lung injury. Physiol Res, 2016. 65(Suppl 5): p. S663-s672.
55. Mikolka, P., et al., Effect of different dosages of dexamethasone therapy on lung function and inflammation in an early phase of acute respiratory distress syndrome model. Physiol Res, 2019. 68(Suppl 3): p. S253-s263.
56. Meduri, G.U., R.A.C. Siemieniuk, R.A. Ness, and S.J. Seyler, Prolonged low-dose methylprednisolone treatment is highly effective in reducing duration of mechanical ventilation and mortality in patients with ARDS. Journal of Intensive Care, 2018. 6(1): p. 53.
57. Tongyoo, S., et al., Hydrocortisone treatment in early sepsis-associated acute respiratory distress syndrome: results of a randomized controlled trial. Critical Care, 2016. 20(1): p. 329.
58. Steinberg, K.P., et al., Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med, 2006. 354(16): p. 1671-84.
59. Mokra, D., P. Mikolka, P. Kosutova, and J. Mokry, Corticosteroids in Acute Lung Injury: The Dilemma Continues. International Journal of Molecular Sciences, 2019. 20(19): p. 4765.
60. Fakioglu, H., et al., Aminophylline therapy during endotoxemia in anesthetized spontaneously breathing rats. Pharmacological Research, 2004. 49(1): p. 45-50.
61. Mokra, D., A. Drgova, R. Pullmann, and A. Calkovska, Selective phosphodiesterase 3 inhibitor olprinone attenuates meconium-induced oxidative lung injury. Pulmonary Pharmacology & Therapeutics, 2012. 25(3): p. 216-222.
62. Mokra, D., et al., Comparison of the effects of low-dose vs. high-dose aminophylline on lung function in experimental meconium aspiration syndrome. J Physiol Pharmacol, 2008. 59 Suppl 6: p. 449-59.
63. Kosutova, P., et al., Effect of phosphodiesterase-4 inhibitor on the inflammation, oxidative damage and apoptosis in a saline lavage-induced model of acute lung injury. European Respiratory Journal, 2018. 52(suppl 62): p. PA5252.
64. Kosutova, P., et al., Effects of phosphodiesterase 5 inhibitor sildenafil on the respiratory parameters, inflammation and apoptosis in a saline lavage-induced model of acute lung injury. J Physiol Pharmacol, 2018. 69(5).
65. Salari, P., et al., Comparison of the effect of aminophylline and low PEEP vs. high PEEP on EGF concentration in critically ill patients with ALI/ARDS. Journal of Clinical Pharmacy and Therapeutics, 2005. 30(2): p. 139-144.
66. Cornet, A.D., et al., Sildenafil attenuates pulmonary arterial pressure but does not improve oxygenation during ARDS. Intensive Care Medicine, 2010. 36(5): p. 758-764.
67. Boyle, A.J., et al., Aspirin therapy in patients with acute respiratory distress syndrome (ARDS) is associated with reduced intensive care unit mortality: a prospective analysis. Critical Care, 2015. 19(1): p. 109.
68. Wang, Y., et al., The preventive effect of antiplatelet therapy in acute respiratory distress syndrome: a meta-analysis. Critical Care, 2018. 22(1): p. 60.
69. Du, F., et al., Antiplatelet Therapy for Critically Ill Patients: A Pairwise and Bayesian Network Meta-Analysis. Shock, 2018. 49(6): p. 616-624.
70. Spadaro, S., et al., Biomarkers for Acute Respiratory Distress syndrome and prospects for personalised medicine. Journal of Inflammation, 2019. 16(1): p. 1.
71. Gupta, N., et al., Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol, 2007. 179(3): p. 1855-63.
72. Ribeiro-Paes, J.T., et al., Unicentric study of cell therapy in chronic obstructive pulmonary disease/pulmonary emphysema. Int J Chron Obstruct Pulmon Dis, 2011. 6: p. 63-71.
73. Ren, Z., et al., Use of Autologous Cord Blood Mononuclear Cells Infusion for the Prevention of Bronchopulmonary Dysplasia in Extremely Preterm Neonates: A Study Protocol for a Placebo-Controlled Randomized Multicenter Trial [NCT03053076]. Front Pediatr, 2020. 8: p. 136.
74. Glassberg, M.K., et al., Allogeneic Human Mesenchymal Stem Cells in Patients With Idiopathic Pulmonary Fibrosis via Intravenous Delivery (AETHER): A Phase I Safety Clinical Trial. Chest, 2017. 151(5): p. 971-981.
75. Fernández-Francos, S., N. Eiro, N. González-Galiano, and F.J. Vizoso, Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Distress Syndrome: Current Evidence and Future Perspectives. International Journal of Molecular Sciences, 2021. 22(15): p. 7850.
76. Ware, L.B. and M.A. Matthay, The acute respiratory distress syndrome. N Engl J Med, 2000. 342(18): p. 1334-49.
77. Herold, S., N.M. Gabrielli, and I. Vadász, Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol, 2013. 305(10): p. L665-81.
78. Castellheim, A., et al., Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scand J Immunol, 2009. 69(6): p. 479-91.
79. Zhou, H., E.K. Fan, and J. Fan, Cell-Cell Interaction Mechanisms in Acute Lung Injury. Shock, 2021. 55(2): p. 167-176.
80. Biswas, S.K. and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology, 2010. 11(10): p. 889-896.
81. Murray, P.J., On macrophage diversity and inflammatory metabolic timers. Nature Reviews Immunology, 2020. 20(2): p. 89-90.
82. Sica, A. and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 2012. 122(3): p. 787-95.
83. Chen, X., et al., Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflammation Research, 2020. 69(9): p. 883-895.
84. Byrne, A.J., S.A. Mathie, L.G. Gregory, and C.M. Lloyd, Pulmonary macrophages: key players in the innate defence of the airways. Thorax, 2015. 70(12): p. 1189-96.
85. Joshi, N., J.M. Walter, and A.V. Misharin, Alveolar Macrophages. Cellular Immunology, 2018. 330: p. 86-90.
86. Epelman, S., K.J. Lavine, and G.J. Randolph, Origin and functions of tissue macrophages. Immunity, 2014. 41(1): p. 21-35.
87. Gordon, S. and A. Plüddemann, Tissue macrophages: heterogeneity and functions. BMC Biology, 2017. 15(1): p. 53.
88. Sieweke, M.H. and J.E. Allen, Beyond Stem Cells: Self-Renewal of Differentiated Macrophages. Science, 2013. 342(6161): p. 1242974.
89. Liu, C., K. Xiao, and L. Xie, Progress in preclinical studies of macrophage autophagy in the regulation of ALI/ARDS. Front Immunol, 2022. 13: p. 922702.
90. Pérez, S. and S. Rius-Pérez, Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants, 2022. 11(7): p. 1394.
91. Shapouri-Moghaddam, A., et al., Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol, 2018. 233(9): p. 6425-6440.
92. He, C. and A.B. Carter, The Metabolic Prospective and Redox Regulation of Macrophage Polarization. J Clin Cell Immunol, 2015. 6(6).
93. Matute-Bello, G., et al., An Official American Thoracic Society Workshop Report: Features and Measurements of Experimental Acute Lung Injury in Animals. American Journal of Respiratory Cell and Molecular Biology, 2011. 44(5): p. 725-738.
94. Matute-Bello, G., C.W. Frevert, and T.R. Martin, Animal models of acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2008. 295(3): p. L379-L399.
95. Domscheit, H., M.A. Hegeman, N. Carvalho, and P.M. Spieth, Molecular Dynamics of Lipopolysaccharide-Induced Lung Injury in Rodents. Frontiers in Physiology, 2020. 11.
96. Matute-Bello, G., C.W. Frevert, and T.R. Martin, Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol, 2008. 295(3): p. L379-99.
97. Moore, B.B. and C.M. Hogaboam, Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol, 2008. 294(2): p. L152-60.
98. MODELSKA, K., et al., Acid-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 1999. 160(5): p. 1450-1456.
99. Wiener-Kronish, J.P., K.H. Albertine, and M.A. Matthay, Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin. The Journal of Clinical Investigation, 1991. 88(3): p. 864-875.
100. Schuster, D.P., ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med, 1994. 149(1): p. 245-60.
101. Wiener-Kronish, J.P., K.H. Albertine, and M.A. Matthay, Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin. J Clin Invest, 1991. 88(3): p. 864-75.
102. Modelska, K., et al., Acid-induced lung injury. Protective effect of anti-interleukin-8 pretreatment on alveolar epithelial barrier function in rabbits. Am J Respir Crit Care Med, 1999. 160(5 Pt 1): p. 1450-6.
103. Frank, L., J.R. Bucher, and R.J. Roberts, Oxygen toxicity in neonatal and adult animals of various species. J Appl Physiol Respir Environ Exerc Physiol, 1978. 45(5): p. 699-704.
104. Dos Santos, C.C. and A.S. Slutsky, Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol (1985), 2000. 89(4): p. 1645-55.
105. Lachmann, B., B. Robertson, and J. Vogel, In vivo lung lavage as an experimental model of the respiratory distress syndrome. Acta Anaesthesiol Scand, 1980. 24(3): p. 231-6.
106. Sakuma, T., et al., Ischemia-reperfusion lung injury in rabbits: mechanisms of injury and protection. Am J Physiol, 1999. 276(1): p. L137-45.
107. Koike, K., et al., Endotoxin after gut ischemia/reperfusion causes irreversible lung injury. J Surg Res, 1992. 52(6): p. 656-62.
108. Cross, A.S., S.M. Opal, J.C. Sadoff, and P. Gemski, Choice of bacteria in animal models of sepsis. Infect Immun, 1993. 61(7): p. 2741-7.
109. Fox-Dewhurst, R., et al., Pulmonary and systemic inflammatory responses in rabbits with gram-negative pneumonia. Am J Respir Crit Care Med, 1997. 155(6): p. 2030-40.
110. Matute-Bello, G., et al., Septic shock and acute lung injury in rabbits with peritonitis: failure of the neutrophil response to localized infection. Am J Respir Crit Care Med, 2001. 163(1): p. 234-43.
111. Villar, J., et al., Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med, 1994. 22(6): p. 914-21.
112. Asti, C., et al., Lipopolysaccharide-induced lung injury in mice. I. Concomitant evaluation of inflammatory cells and haemorrhagic lung damage. Pulm Pharmacol Ther, 2000. 13(2): p. 61-9.
113. Menezes, S.L.S., et al., Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. Journal of Applied Physiology, 2005. 98(5): p. 1777-1783.
114. Bozinovski, S., et al., Innate immune responses to LPS in mouse lung are suppressed and reversed by neutralization of GM-CSF via repression of TLR-4. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2004. 286(4): p. L877-L885.
115. Bitterman, P.B., Pathogenesis of fibrosis in acute lung injury. The American Journal of Medicine, 1992. 92(6, Supplement 1): p. S39-S43.
116. Garcia-Verdugo, I., et al., Synthetic peptides representing the N-terminal segment of surfactant protein C modulate LPS-stimulated TNF-α production by macrophages. Innate Immunity, 2009. 15(1): p. 53-62.
117. Glasser, S.W., et al., Surfactant protein C-deficient mice are susceptible to respiratory syncytial virus infection. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2009. 297(1): p. L64-L72.
118. Chen, K.B., et al., Platonin mitigates lung injury in a two-hit model of hemorrhage/resuscitation and endotoxemia in rats. J Trauma Acute Care Surg, 2012. 72(3): p. 660-70.
119. Chimenti, L., et al., Comparison of direct and indirect models of early induced acute lung injury. Intensive Care Medicine Experimental, 2020. 8(1): p. 62.
120. Bastarache, J.A., et al., Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2009. 297(6): p. L1035-L1041.
121. Reutershan, J., et al., Therapeutic anti-inflammatory effects of myeloid cell adenosine receptor A2a stimulation in lipopolysaccharide-induced lung injury. J Immunol, 2007. 179(2): p. 1254-63.
122. Hinderer, S., S.L. Layland, and K. Schenke-Layland, ECM and ECM-like materials - Biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Deliv Rev, 2016. 97: p. 260-9.
123. Hoshiba, T., Decellularized Extracellular Matrix for Cancer Research. Materials, 2019. 12(8): p. 1311.
124. Dhandayuthapani, B., Y. Yoshida, T. Maekawa, and D.S. Kumar, Polymeric Scaffolds in Tissue Engineering Application: A Review. International Journal of Polymer Science, 2011. 2011: p. 290602.
125. Chen, F.M. and X. Liu, Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci, 2016. 53: p. 86-168.
126. Song, J.J. and H.C. Ott, Organ engineering based on decellularized matrix scaffolds. Trends Mol Med, 2011. 17(8): p. 424-32.
127. Zhang, X., et al., Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater, 2022. 10: p. 15-31.
128. Liu, C., M. Pei, Q. Li, and Y. Zhang, Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med, 2022. 16(1): p. 56-82.
129. Ramaswamy, A.K., D.A. Vorp, and J.S. Weinbaum, Functional Vascular Tissue Engineering Inspired by Matricellular Proteins. Frontiers in Cardiovascular Medicine, 2019. 6.
130. Catoira, M.C., et al., Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med, 2019. 30(10): p. 115.
131. Theocharis, A.D., S.S. Skandalis, C. Gialeli, and N.K. Karamanos, Extracellular matrix structure. Adv Drug Deliv Rev, 2016. 97: p. 4-27.
132. Vasvani, S., P. Kulkarni, and D. Rawtani, Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol, 2020. 151: p. 1012-1029.
133. Vigetti, D., et al., Epigenetics in extracellular matrix remodeling and hyaluronan metabolism. Febs j, 2014. 281(22): p. 4980-92.
134. Bandzerewicz, A. and A. Gadomska-Gajadhur, Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells, 2022. 11(5): p. 914.
135. Rozario, T. and D.W. DeSimone, The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol, 2010. 341(1): p. 126-40.
136. Schwarz, D., M. Lipoldová, H. Reinecke, and Y. Sohrabi, Targeting inflammation with collagen. Clin Transl Med, 2022. 12(5): p. e831.
137. Tomlin, H. and A.M. Piccinini, A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology, 2018. 155(2): p. 186-201.
138. Schacker, T.W., et al., Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J Clin Invest, 2002. 110(8): p. 1133-9.
139. Rendeiro, A.F., et al., The spatial landscape of lung pathology during COVID-19 progression. Nature, 2021. 593(7860): p. 564-569.
140. Furuzawa-Carballeda, J., et al., Polymerized-Type I Collagen Induces Upregulation of Foxp3-Expressing CD4 Regulatory T Cells and Downregulation of IL-17-Producing CD4. T Cells (Th17) Cells in Collagen-Induced Arthritis. Clinical and Developmental Immunology, 2012. 2012: p. 618-608.
141. Honvo, G., et al., Role of Collagen Derivatives in Osteoarthritis and Cartilage Repair: A Systematic Scoping Review With Evidence Mapping. Rheumatol Ther, 2020. 7(4): p. 703-740.
142. Costa, A., et al., The formulation of nanomedicines for treating tuberculosis. Advanced drug delivery reviews, 2016. 102.
143. Badylak, S.F., Regenerative medicine and developmental biology: The role of the extracellular matrix. The Anatomical Record Part B: The New Anatomist, 2005. 287B(1): p. 36-41.
144. Cortiella, J., et al., Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A, 2010. 16(8): p. 2565-80.
145. Optimization of Amniotic Membrane (AM) Denuding for Tissue Engineering. Tissue Engineering Part C: Methods, 2008. 14(4): p. 371-381.
146. Elder, B.D., D.H. Kim, and K.A. Athanasiou, Developing an articular cartilage decellularization process toward facet joint cartilage replacement. Neurosurgery, 2010. 66(4): p. 722-7; discussion 727.
147. Prasertsung, I., et al., Development of acellular dermis from porcine skin using periodic pressurized technique. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008. 85B(1): p. 210-219.
148. Processing Porcine Cornea for Biomedical Applications. Tissue Engineering Part C: Methods, 2009. 15(4): p. 635-645.
149. Preparation of Cardiac Extracellular Matrix from an Intact Porcine Heart. Tissue Engineering Part C: Methods, 2010. 16(3): p. 525-532.
150. Remlinger, N.T., et al., Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials, 2010. 31(13): p. 3520-6.
151. Hashimoto, Y., et al., Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials, 2010. 31(14): p. 3941-8.
152. Funamoto, S., et al., The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials, 2010. 31(13): p. 3590-5.
153. Phillips, M., E. Maor, and B. Rubinsky, Nonthermal irreversible electroporation for tissue decellularization. J Biomech Eng, 2010. 132(9): p. 091003.
154. Sano, M.B., et al., Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. BioMedical Engineering OnLine, 2010. 9(1): p. 83.
155. Azhim, A., et al., The use of sonication treatment to completely decellularize blood arteries: a pilot study. Annu Int Conf IEEE Eng Med Biol Soc, 2011. 2011: p. 2468-71.
156. Azhim, A., et al., The use of sonication treatment to decellularize aortic tissues for preparation of bioscaffolds. J Biomater Appl, 2014. 29(1): p. 130-41.
157. Development of a Porcine Bladder Acellular Matrix with Well-Preserved Extracellular Bioactive Factors for Tissue Engineering. Tissue Engineering Part C: Methods, 2010. 16(5): p. 1201-1211.
158. Prasertsung, I., et al., Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater, 2008. 85(1): p. 210-9.
159. Zhou, J., et al., Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials, 2010. 31(9): p. 2549-54.
160. Du, L. and X. Wu, Development and Characterization of a Full-Thickness Acellular Porcine Cornea Matrix for Tissue Engineering. Artificial Organs, 2011. 35(7): p. 691-705.
161. Wu, Z., et al., The use of phospholipase A(2) to prepare acellular porcine corneal stroma as a tissue engineering scaffold. Biomaterials, 2009. 30(21): p. 3513-22.
162. Huang, M., et al., Using acellular porcine limbal stroma for rabbit limbal stem cell microenvironment reconstruction. Biomaterials, 2011. 32(31): p. 7812-21.
163. Ross, E.A., et al., Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol, 2009. 20(11): p. 2338-47.
164. A Biodegradable, Acellular Xenogeneic Scaffold for Regeneration of the Vocal Fold Lamina Propria. Tissue Engineering, 2007. 13(3): p. 551-566.
165. Petersen, T.H., et al., Tissue-Engineered Lungs for in Vivo Implantation. Science, 2010. 329(5991): p. 538-541.
166. Novel Utilization of Serum in Tissue Decellularization. Tissue Engineering Part C: Methods, 2010. 16(2): p. 173-184.
167. Gorschewsky, O., et al., Quantitative analysis of biochemical characteristics of bone-patellar tendon-bone allografts. Biomed Mater Eng, 2005. 15(6): p. 403-11.
168. Freytes, D.O., R.M. Stoner, and S.F. Badylak, Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008. 84B(2): p. 408-414.
169. Mazini, L., et al., Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. International Journal of Molecular Sciences, 2020. 21(4): p. 1306.
170. Chai, Z. and Z. Li, Applications of Decellularized Extracellular Matrix for Regenerative Medicine, in Engineering Materials for Stem Cell Regeneration, F.A. Sheikh, Editor. 2021, Springer Singapore: Singapore. p. 651-689.
171. Alqahtani, Q., et al., Decellularized Swine Dental Pulp Tissue for Regenerative Root Canal Therapy. Journal of Dental Research, 2018. 97(13): p. 1460-1467.
172. Faulk, D.M., S.A. Johnson, and S.F. Badylak, 7 - Decellularized biological scaffolds for cardiac repair and regeneration, in Cardiac Regeneration and Repair, R.-K. Li and R.D. Weisel, Editors. 2014, Woodhead Publishing. p. 180-200.
173. Chacon, E., D. Acosta, and J.J. Lemasters, 9 - Primary Cultures of Cardiac Myocytes as In Vitro Models for Pharmacological and Toxicological Assessments, in In Vitro Methods in Pharmaceutical Research, J.V. Castell and M.J. Gómez-Lechón, Editors. 1997, Academic Press: San Diego. p. 209-223.
174. Longhin, E.M., N. El Yamani, E. Rundén-Pran, and M. Dusinska, The alamar blue assay in the context of safety testing of nanomaterials. Frontiers in Toxicology, 2022. 4.
175. Al-Anati, L., et al., Differential cell sensitivity between OTA and LPS upon releasing TNF-α. Toxins (Basel), 2010. 2(6): p. 1279-99.
176. Genin, M., et al., M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer, 2015. 15: p. 577.
177. Leng, S.X., et al., ELISA and Multiplex Technologies for Cytokine Measurement in Inflammation and Aging Research. The Journals of Gerontology: Series A, 2008. 63(8): p. 879-884.
178. Anantanawat, K., N. Pitsch, C. Fromont, and C. Janitz, High-throughput Quant-iT PicoGreen assay using an automated liquid handling system. BioTechniques, 2019. 66(6): p. 290-294.
179. Friedrich, E.E., et al., Residual sodium dodecyl sulfate in decellularized muscle matrices leads to fibroblast activation in vitro and foreign body response in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2018. 12(3): p. e1704-e1715.
180. Structure and Function of the TMJ Disc and Disc Attachments, in Specialty Imaging: Temporomandibular Joint, D. Tamimi and D. Hatcher, Editors. 2016, Elsevier: Philadelphia. p. 50-53.
181. Aquino, R.S., E.S. Lee, and P.W. Park, Diverse Functions of Glycosaminoglycans in Infectious Diseases, in Progress in Molecular Biology and Translational Science, L. Zhang, Editor. 2010, Academic Press. p. 373-394.
182. Pienn, M., et al., Healthy Lung Vessel Morphology Derived From Thoracic Computed Tomography. Frontiers in Physiology, 2018. 9.
183. Kao, C.-Y., H.-Q.-D. Nguyen, and Y.-C. Weng, Characterization of Porcine Urinary Bladder Matrix Hydrogels from Sodium Dodecyl Sulfate Decellularization Method. Polymers, 2020. 12(12): p. 3007.
184. Du, L., X. Wu, K. Pang, and Y. Yang, Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaffold. British Journal of Ophthalmology, 2011. 95(3): p. 410-414.
185. Fernández-Pérez, J. and M. Ahearne, The impact of decellularization methods on extracellular matrix derived hydrogels. Scientific Reports, 2019. 9(1): p. 14933.
186. Gui, L., S.A. Chan, C.K. Breuer, and L.E. Niklason, Novel utilization of serum in tissue decellularization. Tissue Eng Part C Methods, 2010. 16(2): p. 173-84.
187. Gilbert, T.W., T.L. Sellaro, and S.F. Badylak, Decellularization of tissues and organs. Biomaterials, 2006. 27(19): p. 3675-3683.
188. Gilbert, T.W., J.M. Freund, and S.F. Badylak, Quantification of DNA in biologic scaffold materials. J Surg Res, 2009. 152(1): p. 135-9.
189. Badylak, S.F. and T.W. Gilbert, Immune response to biologic scaffold materials. Semin Immunol, 2008. 20(2): p. 109-16.
190. Keane, T.J., R. Londono, N.J. Turner, and S.F. Badylak, Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials, 2012. 33(6): p. 1771-81.
191. Daly, K.A., et al., Damage associated molecular patterns within xenogeneic biologic scaffolds and their effects on host remodeling. Biomaterials, 2012. 33(1): p. 91-101.
192. Nichols, J.E., et al., Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng Part A, 2013. 19(17-18): p. 2045-62.
193. Vindin, H.J., B.G.G. Oliver, and A.S. Weiss, Elastin in healthy and diseased lung. Current Opinion in Biotechnology, 2022. 74: p. 15-20.
194. Mecham, R.P., Elastin in lung development and disease pathogenesis. Matrix Biology, 2018. 73: p. 6-20.
195. Fleming, S., et al., Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. The Lancet, 2011. 377(9770): p. 1011-1018.
196. Sharma, G. and J. Goodwin, Effect of aging on respiratory system physiology and immunology. Clin Interv Aging, 2006. 1(3): p. 253-60.
197. Liu, G., et al., Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacology & Therapeutics, 2021. 225: p. 107839.
198. Goldberga, I., R. Li, and M.J. Duer, Collagen Structure–Function Relationships from Solid-State NMR Spectroscopy. Accounts of Chemical Research, 2018. 51(7): p. 1621-1629.
199. Weids, A.J., S. Ibstedt, M.J. Tamás, and C.M. Grant, Distinct stress conditions result in aggregation of proteins with similar properties. Scientific Reports, 2016. 6(1): p. 24554.
200. Small Intestinal Submucosa: A Tissue-Derived Extracellular Matrix That Promotes Tissue-Specific Growth and Differentiation of Cells in Vitro. Tissue Engineering, 1998. 4(2): p. 157-174.
201. Gilbert, T.W., et al., Production and characterization of ECM powder: implications for tissue engineering applications. Biomaterials, 2005. 26(12): p. 1431-5.
202. Saldin, L.T., et al., Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia, 2017. 49: p. 1-15.
203. Brightman, A.O., et al., Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers, 2000. 54(3): p. 222-234.
204. Matinong, A.M.E., Y. Chisti, K.L. Pickering, and R.G. Haverkamp, Collagen Extraction from Animal Skin. Biology, 2022. 11(6): p. 905.
205. Gaudet, A.D. and P.G. Popovich, Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp Neurol, 2014. 258: p. 24-34.
206. Azevedo, H.S. and I. Pashkuleva, Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Advanced Drug Delivery Reviews, 2015. 94: p. 63-76.
207. Mohan, V., A. Das, and I. Sagi, Emerging roles of ECM remodeling processes in cancer. Seminars in Cancer Biology, 2020. 62: p. 192-200.
208. Wagenseil, J.E. and R.P. Mecham, Vascular Extracellular Matrix and Arterial Mechanics. Physiological Reviews, 2009. 89(3): p. 957-989.
209. Bonnans, C., J. Chou, and Z. Werb, Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology, 2014. 15(12): p. 786-801.
210. Afratis, N.A., M. Selman, A. Pardo, and I. Sagi, Emerging insights into the role of matrix metalloproteases as therapeutic targets in fibrosis. Matrix Biology, 2018. 68-69: p. 167-179.
211. Craig, V.J., L. Zhang, J.S. Hagood, and C.A. Owen, Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2015. 53(5): p. 585-600.
212. Aguda, A.H., et al., Structural basis of collagen fiber degradation by cathepsin K. Proceedings of the National Academy of Sciences, 2014. 111(49): p. 17474-17479.
213. Panwar, P., et al., Effects of Cysteine Proteases on the Structural and Mechanical Properties of Collagen Fibers*. Journal of Biological Chemistry, 2013. 288(8): p. 5940-5950.
214. Everts, V., E. van der Zee, L. Creemers, and W. Beertsen, Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. The Histochemical Journal, 1996. 28(4): p. 229-245.
215. Lee, W., J. Sodek, and C.A.G. McCulloch, Role of integrins in regulation of collagen phagocytosis by human fibroblasts. Journal of Cellular Physiology, 1996. 168(3): p. 695-704.
216. von Delwig, A., et al., Inhibition of macropinocytosis blocks antigen presentation of type II collagen in vitro and in vivoin HLA-DR1 transgenic mice. Arthritis Research & Therapy, 2006. 8(4): p. R93.
217. Yamazaki, S., et al., Uptake of collagen type I via macropinocytosis cause mTOR activation and anti-cancer drug resistance. Biochemical and Biophysical Research Communications, 2020. 526(1): p. 191-198.
218. Jariwala, N., et al., Matrikines as mediators of tissue remodelling. Advanced Drug Delivery Reviews, 2022. 185: p. 114240.
219. Xu, M., et al., Inflammation-mediated matrix remodeling of extracellular matrix-mimicking biomaterials in tissue engineering and regenerative medicine. Acta Biomaterialia, 2022. 151: p. 106-117.
220. Choi, J., et al., Inflammatory Signals Induce AT2 Cell-Derived Damage-Associated Transient Progenitors that Mediate Alveolar Regeneration. Cell Stem Cell, 2020. 27(3): p. 366-382.e7.
221. Prabhala, P. and M. Magnusson, Inflammatory Alveolar Type 2 Cells in Chronic Obstructive Pulmonary Disease: Impairing or Improving Disease Outcome? Am J Respir Cell Mol Biol, 2022. 67(6): p. 621-622.
222. Hübner, R.-H., et al., Standardized quantification of pulmonary fibrosis in histological samples. BioTechniques, 2008. 44(4): p. 507-517.

無法下載圖示 全文公開日期 2033/11/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE