簡易檢索 / 詳目顯示

研究生: 王岑愉
Cen-Yu Wang
論文名稱: 具改良EML等效電路的高速光傳輸模組整合模擬
Co-Simulation of High Speed Optical Transmitters with Enhanced EML Equivalent Circuits
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
楊淳良
Chun-Liang Yang
周一鳴
I-Ming Jou
楊成發
Chang-Fa Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 117
中文關鍵詞: 外調雷射高速等效電路時域反射儀
外文關鍵詞: EML, TDR, equivalent circuit model, 53 GBaud/s
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研發目標為探討及模擬單通道傳輸速度達53 GBaud/s的電致吸收調變雷射傳輸模組,其傳輸模組之架構分為三個部分:傳輸線基板、金屬打線以及外調雷射晶片。首先,透過軟體設計及模擬100G-LR1與400G-LR4兩種規格的傳輸線基板之高頻特性,以及高速連接軟板的頻率響應和阻抗特性。接著將電致吸收調變雷射等效小訊號模型進行改良,利用曲線擬和的方法,設計出大訊號電路模型,並透過實際量測電致吸收調變雷射之頻率響應以匹配在各偏壓時的等效電路。藉由S11和S21的匹配結果得知其電路中之參數變動趨勢所對應頻率響應情況。
最後將傳輸線基板及電致吸收調變雷射等效電路之匹配結果整合成高速光傳輸模組,經由模擬其傳輸性能,以及將S11特性轉換成相對應的時域反射特性以觀察阻抗變化,並觀察S11對眼圖的影響,將結果與實際量測結果進行比對擬和,以驗證電致吸收調變雷射傳輸模組效能。經由模擬結果顯示,藉由調整電致吸收調變雷射參數可提升傳輸模組之頻率響應及眼圖結果,達成更好的傳輸品質。所建立的等效電路與分析方法可作為優化具電致吸收調變雷射的光收發器的有效工具,並可指出強化元件與模組性能的方向。


In this thesis, we investigate a high-speed electro-absorption modulated laser (EML) based transmission module to achieve a single-channel transmission speed of 53 GBaud/s. The transmitter module is divided into three parts: carrier with transmission line, metal bonding wire, and the EML laser chip. Firstly, we designed and simulated the high-frequency characteristics of the 100G-LR1 and 400G-LR4 carriers as well as the frequency response and impedance characteristics of the high-speed connection boards. Then, an improved small-signal equivalent circuit model of EML was established for matching the measured frequency response. The large-signal circuit model was developed by fitting the measured EML transfer function with a polynomial. The measurement results of S11 and S21 are used to obtain the device parameters in the equivalent circuit model for various bias voltages by matching them with the simulated frequency responses.
Finally, the simulation results of the transmission line carrier and the EML equivalent circuit are integrated into a high-speed optical transmission module. The transmission performance can be simulated with the equivalent circuit and the impedance variation can be observed by converting the S11 performance to the corresponding time-domain reflection (TDR) results. The effects of changing the device parameters on the eye diagrams can be clearly observed. The frequency response and the eye diagram of the transmission module can be improved by adjusting the parameters of the EML equivalent circuit model. The established equivalent circuit model and analysis methodology can provide an effective tool for optimizing the transmitter module with EMLs and indicate the direction for performance enhancement.

摘要 Abstract 致謝 目錄 圖目錄 表目錄 第 1 章 導論 1.1 前言 1.2 研究動機 1.3 文獻探討 1.4 論文架構 第 2 章 光傳輸模組介紹 2.1 前言 2.2 傳輸線基板之介紹 2.2.1 傳輸線原理 2.2.2 電磁模擬軟體設定 2.2.3 激發端口之比較 2.3 光傳輸模組分析 2.3.1 頻域特性 2.3.2 時域特性 第 3 章 基板設計及模擬結果 3.1 前言 3.2 雷射模擬基板比較 3.2.1 100G-LR1 3.2.2 400G-LR4 3.3 高速連接軟板模擬設計 3.3.1 Case A之區域1 3.3.2 Case B之區域1 3.3.3 Case C之區域1 3.3.4 區域2之訊號穿孔 3.3.5 區域2之訊號穿孔具銲錫 第 4 章 EML小訊號電路設計與模擬 4.1 前言 4.2 調變雷射介紹 4.2.1 直調雷射 4.2.2 外調雷射 4.3 EML小信號電路模型設計 4.3.1 分布式反饋雷射二極體(DFB)設計 4.3.2 電致吸收調變器(EAM)設計 4.4 EML小訊號電路設計 4.5 EML大訊號電路及眼圖 第 5 章 光傳輸模組整合與模擬 5.1 前言 5.2 量測結果 5.3 EML傳輸模組設計與模擬 5.3.1 匹配之參數介紹 5.3.2 等效電路之匹配結果 5.4 模擬結果分析 第 6 章 結論 6.1 研究成果討論 6.2 未來研究方向與展望 參考文獻

[1] E. Alliance., "Ethernet Roadmap 2022," 2022. [Online]. Available: https://ethernetalliance.org/technology/ethernet-roadmap/.
[2] 邱譯緯, "EML等效電路設計與光傳輸模組整合模擬," 國立台灣科技大學碩士論文, 2018.
[3] C. Xu, Y. Xu, Y. Zhao, K. Lu, W. Liu, S. Fan, H. Zou, and W. Liu, "High‐Frequency Modeling and Optimization of E/O Response and Reflection Characteristics of 40 Gb/s EML Module for Optical Transmitters," ETRI Journal, vol. 34, no. 3, pp. 361-368, 2012.
[4] O. K. Kwon, Y. T. Han, Y. S. Baek, and Y. C. Chung, "Improvement of modulation bandwidth in electroabsorption-modulated laser by utilizing the resonance property in bonding wire," Optics Express, vol. 20, no. 11, pp. 11806-11812, 2012.
[5] R. Fujihara, M. Shirao, S. Nakamura, S. Nakano, and K. Hasegawa, "A cost effective hermetically sealed 106 Gbit/s PAM4 EML TO-CAN for beyond-5G mobile fronthaul," in 2020 European Conference on Optical Communications (ECOC), 2020, pp. 1-4.
[6] I. Rosu, "Microstrip, Stripline, CPW, and SIW Design." [Online]. Available: https://www.qsl.net/va3iul/Microstrip_Stripline_CPW_Design/Microstrip_Stripline_and_CPW_Design.pdf.
[7] 王鴻瑋, "RIN雜訊等效電路設計與EML光傳輸模組整合模擬," 國立台灣科技大學碩士論文, 2021.
[8] C. P. Wen, "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1087-1090, 1969.
[9] M.Bailey, "Layout Guidelines for RF and Mixed-Signal PCBs," 2011. [Online]. Available: https://www.eeweb.com/wp-content/uploads/articles-app-notes-files-guidelines-for-rf-pcb-layout-1317765607.pdf.
[10] J. Miller, "Examining the impact of split planes on signal and power integrity.," 2009. [Online]. Available: http://www.electrical-integrity.com/Paper_download_files/DC09_SUN_Split_Planes.pdf.
[11] Ansoft, "Coplanar Waveguide (CPW)," 2005. [Online]. Available: https://www.researchgate.net/file.PostFileLoader.html?id=58a00de2217e20599a797257&assetKey=AS%3A460840404033537%401486884322566.
[12] E. Zhang, "HFSS Lumped Port vs Wave Port," 2014. [Online]. Available: https:// zhuanlan.zhihu.com/p/44027031.
[13] K. Technologies, "S-Parameter TDR FrontPanel Operations," 1985. [Online]. Available: qthelp://ads.2020/doc/data/S-Parameter_TDR_FrontPanel_Operations.html.
[14] N. Ohata, Y. Kawamoto, M. Binkai, T. Murao, H. Sano, Y. Imai, H. Itamoto, and K. Hasegawa, "A compact integrated LAN-WDM EML TOSA employing stripline with an aperture in the FPC," Journal of Lightwave Technology, vol. 38, no. 12, pp. 3246-3251, 2020.
[15] J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, "400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation," IEEE Communications Magazine, vol. 53, no. 2, pp. 182-189, 2015.
[16] 吳奇璋, "分佈反饋式雷射與行波式電致吸收調變器積體化元件製作," 國立台灣科技大學碩士論文, 2010.
[17] O. Kibar, D. Van Blerkom, C. Fan, P. J. Marchand, and S. C. Esener, "Small-signal-equivalent circuits for a semiconductor laser," Applied Optics, vol. 37, no. 26, pp. 6136-6139, 1998.
[18] J. H. Kim, "Wide-band and scalable equivalent circuit model for multiple quantum well laser diodes," PhD dissertation, Georgia Institute of Technology, 2005.
[19] G. Li, P. Yu, W. Chang, K. Loi, C. Sun, and S. Pappert, "Concise RF equivalent circuit model for electroabsorption modulators," Electronics Letters, vol. 36, no. 9, pp. 818-820, 2000.
[20] N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, "Electrical and optical coupling in an electroabsorption modulator integrated with a DFB laser," IEEE Journal of Quantum Electronics, vol. 43, no. 7, pp. 535-544, 2007.
[21] 邱繹恩, "高速EML光傳輸模組整合模擬與優化," 國立台灣科技大學碩士論文, 2020.
[22] F. Deshours, C. Algani, F. Blache, G. Alquié, C. Kazmierski, and C. Jany, "New nonlinear electrical modeling of high-speed electroabsorption modulators for 40 Gb/s optical networks," Journal of Lightwave Technology, vol. 29, no. 6, pp. 880-887, 2011.
[23] C. G. Lim, "Electro-absorption modulator integrated lasers with enhanced signal injection efficiency," Journal of Lightwave Technology, vol. 26, no. 6, pp. 685-691, 2008.
[24] Sedra/Smith, Microelectronic Circuits. Oxford University, 2021.
[25] T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, "Single and tandem axial pin nanowire photovoltaic devices," Nano Letters, vol. 8, no. 10, pp. 3456-3460, 2008.
[26] 林尚奕, "應用於高速有線傳輸系統之非同步取樣式PAM-4訊號眼圖重建及參數估測演算法," 國立台灣大學碩士論文, 2017.

無法下載圖示 全文公開日期 2025/08/11 (校內網路)
全文公開日期 2027/08/11 (校外網路)
全文公開日期 2027/08/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE