簡易檢索 / 詳目顯示

研究生: 簡正清
Cheng-Ching Chien
論文名稱: 輸電鐵塔模態頻率受環境影響之分析研究
Analysis of Environmental Effects on Modal Frequencies of a Power Transmission Tower
指導教授: 許丁友
Ting-Yu Hsu
口試委員: 楊亦東
I-Tung Yang
吳文華
Wen-Hwa Wu
洪士林
Shih-Lin Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 199
中文關鍵詞: 輸電鐵塔自動化模態識別長期監測模態頻率颱風
外文關鍵詞: Power transmission tower, automatic system identification, long term monitoring, modal frequency, typhoon
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現代社會經濟和人民生活都須仰賴電力來維持運作,因此電力系統可視為現在生活的基石,尤其台灣地形崎嶇,電力運輸系統大部分都由輸電鐵塔以架空纜線的方式來串聯台灣輸電網,一旦某座輸電鐵塔結構損壞,可能會造成大面積的電力運輸系統中斷,危害到社會經濟及人民生活的損失,這使輸電鐵塔結構會是電力運輸系統中不容忽視的一環,因此對於輸電鐵塔的結構健康診斷為重要的研究方向。
輸電鐵塔監測之工作項目主要有現地微振量測及現地環境因素量測二部分,本研究根據現地微振量測資料進行自動化模態識別分析,取得每小時的模態頻率,並考慮其受到風速、溫度及振動幅度等環境因素之影響進行迴歸分析,根據模態頻率的迴歸值與量測值之誤差設定模態頻率的行動值與警戒值。之後,利用鐵塔有限元素模型之關鍵桿件剛度折減來模擬損傷案例,了解本研究所提出之行動值與警戒值是否可作為判斷損傷發生之依據。
此外,本研究發現颱風事件過後數個月內,鐵塔之數個高頻模態有明顯不同之趨勢,並於平均氣溫開始下降時又恢復原本趨勢。未來研究應考量颱風事件造成之趨勢變化,並據以設定更敏感之行動值與警戒值。


Modern social economy and people's lives must rely on electricity to maintain operations. Once the structure of a transmission tower is damaged, it may cause a large-scale power transmission system to be interrupted, which will endanger the loss of social economy and people's lives. This makes the transmission tower structure be a key point of the electric transportation system. Therefore, for the transmission tower structural health monitoring is an important research.
The work of monitoring the transmission tower mainly includes the local micro-vibration measurement and the local environmental factor measurement. This study identifies the vibration measurement data by automated modal analysis. The regression analysis is performed on the influence of environmental factors such as wind speed, temperature and vibration, and the action value and the alert value are set according to the error of the regression value of the modal frequency and the measured value. After that, the damage case is simulated by using the key member stiffness reduction of the finite element model of the tower to understand whether the action value and the alert value proposed in this study can detect the damage.
In addition, this study found that several high-frequency modals of the tower have a trend within a few months after the typhoon event, and the original trend is restored when the temperature begins to decrease. Future research should consider trends in typhoon events and set more sensitive action and alert values.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 第二章 監測結構與監測儀器 3 2.1 輸電鐵塔結構和各感測器配置位置 3 2.2 各感測器規格 6 2.2.1 動態監測系統 6 2.2.2 靜態資料蒐集系統 9 2.3 監測數據紀錄方式 11 第三章 研究方法 12 3.1 動態資料前處理 12 3.1.1 取樣頻率 12 3.1.2 均方根加速度 13 3.2 識別理論 15 3.2.1 隨機子空間識別理論(Stochastic Subspace Identification, SSI) 16 3.3 自動化模態識別 22 3.3.1 自動化清理數學模態 23 3.3.2 將相同模態歸類為一簇 25 3.3.3 選擇最終模態 28 3.4 設定各個模態長期監測門檻值 30 3.4.1 模態相似參數 31 3.4.2 模態保證指標與模態頻率門檻值設置 33 第四章 模態頻率受環境因素影響分析 38 4.1 各頻率模態形狀圖 38 4.2 初步觀察模態頻率與環境因素之關係圖 45 4.2.1 均方根加速度 45 4.2.2 溫度 52 4.2.3 風速 58 4.3 模態頻率與環境因素歷時圖 64 4.4 設定各模態頻率行動值與警戒值 86 第五章 模擬分析結構損傷 97 5.1 鐵塔有限元素模型與分析結果 97 5.2 門檻值對於損傷診斷之成效 119 5.2.1 模擬結構四月損傷 120 5.2.2 模擬結構七月底至八月底損傷 132 5.2.3 模擬結構十二月損傷 144 5.2.4 門檻值設定方式之成效探討與改進 156 第六章 結論與未來研究方向 175 6.1 結論 175 6.2 未來研究方向 176 參考文獻 178

1. Devriendt, C., Magalhaes, F., Weijtjens, W., De Sitter, G., Cunha, A., & Guillaume, P. (2014). Structural health monitoring of offshore wind turbines using automated operational modal analysis. Structural Health Monitoring-an International Journal, 13(6), 644-659. doi:10.1177/1475921714556568
2. Peeters, B., & De Roeck, G. (2001). One-year monitoring of the Z24-Bridge: environmental effects versus damage events. Earthquake Engineering & Structural Dynamics, 30(2), 149-171. doi:Doi 10.1002/1096-9845(200102)30:2<149::Aid-Eqe1>3.0.Co;2-Z
3. Reynders, E., Houbrechts, J., & De Roeck, G. (2012). Fully automated (operational) modal analysis. Mechanical Systems and Signal Processing, 29, 228-250. doi:10.1016/j.ymssp.2012.01.007
4. Ubertini, F., Comanducci, G., & Cavalagli, N. (2016). Vibration-based structural health monitoring of a historic bell-tower using output-only measurements and multivariate statistical analysis. Structural Health Monitoring: An International Journal, 15(4), 438-457. doi:10.1177/1475921716643948
5. Van Overschee, P., & De Moor, B. (2012). Subspace identification for linear systems: Theory—Implementation—Applications: Springer Science & Business Media.
6. Verboven, P., Cauberghe, B., Parloo, E., Vanlanduit, S., & Guillaume, P. (2004). User-assisting tools for a fast frequency-domain modal parameter estimation method. Mechanical Systems and Signal Processing, 18(4), 759-780. doi:10.1016/S0888-3270(03)00053-0
7. Weijtjens, W., Verbelen, T., De Sitter, G., & Devriendt, C. (2016). Foundation structural health monitoring of an offshore wind turbinea full-scale case study. Structural Health Monitoring-an International Journal, 15(4), 389-402. doi:10.1177/1475921715586624
8. Wu, W.-H., Wang, S.-W., Chen, C.-C., & Lai, G. (2017). Assessment of environmental and nondestructive earthquake effects on modal parameters of an office building based on long-term vibration measurements. Smart Materials and Structures, 26(5), 055034. doi:10.1088/1361-665X/aa6ae6
9.

QR CODE