簡易檢索 / 詳目顯示

研究生: 蘇柏丰
Bo-Feng Su
論文名稱: 以二維合成傳輸線實現微型化微波被動元件
A Study of Two-dimensional Synthesized Transmission lines for miniaturized Microwave Passive Component
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 曾昭雄
Chao-Hsiung Tseng
王蒼容
Chun-Long Wang
廖文照
Wen-Jiao Liao
王釗偉
Chao-Wei Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 二維合成傳輸線、布洛赫定理枝幹耦合器鼠競耦合器威爾京森分波器寬面方向耦合器共模濾波器
外文關鍵詞: Bloch-Floquet theorem, broadside coupled-line coupler
相關次數: 點閱:300下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出新式二維週期性合成傳輸線,使之具有準-TEM模態傳播,並可利用其電路單元結構之對稱方正特性,於系統有限空間中作任意之佈局。該二維週期性合成傳輸線係以簡易集總元件等效均勻傳輸線之特性,可實現大範圍之特徵阻抗與電氣長度,並以任意曲折繞線之方式使其具備高度電路微小化之能力。本論文將詳盡討論此合成傳輸線之設計原理、等效電路模型、以模擬與量測結果。
    利用該合成傳輸線,本論文首先完成微型化枝幹耦合器、鼠競耦合器與威爾京森分波器;若與傳統設計相較,其電路縮小能力分別為80%、94%與83%,且同時具有與傳統設計相仿之良好電氣響應,本文並有表列以彰顯其電路特性與傳統設計之比較。
    其次,本文利用二維合成傳輸線及多層板結構,實現微型化3-dB寬面方向耦合器。內文將探討奇偶模態之電路分析、模擬及量測結果,並提供奇偶模態之特徵阻抗及耦合量的設計圖表。此方向耦合器可經由調整二維合成傳輸線之電感及電容結構進行耦合量之控制。本文對耦合器之電路響應亦有深入探討與列表比較。與傳統設計相較,該寬面方向耦合器具有可觀縮短耦合長度之能力與良好的電氣響應。
    最後,本論文成功利用二維合成傳輸線,設計微型化共模濾波器,其週期性之蕈狀結構係利用多層板實現。該創新設計可抑制共模雜訊低於15 dB,頻寬範圍為1.83 GHz ~ 3.68 GHz,且於頻寬範圍內亦具有良好之阻抗匹配。本論文亦提供完整之設計流程與表列比較,作為未來任意規格設計之依據。


    A novel two-dimensional periodic synthesized transmission line, supporting quasi-TEM mode propagation, is proposed and investigated in this thesis. Benefitting from the square footprint and symmetrical structure of the proposed unit cell, the two-dimensional synthesized line exhibits extraordinary flexibility in layout arrangement within a limited space.
    The proposed synthesized line is implemented by simple quasi-lumped elements, and is capable of providing a wide range of characteristic impedance and electrical length. The design concept, equivalent circuit model, and experimental results are carefully investigated and discussed.
    By utilizing the proposed two-dimensional synthesized line, miniaturized branch-line coupler, rat-race coupler, and Wilkinson power divider are developed with not only a substantial miniaturization ratio but comparable circuit performances. The details of the proposed designs are tabulated and compared with the state-of-the-art designs in the literature.
    A miniaturized 3-dB broadside coupled-line coupler is also realized on multilayer process using the two-dimensional synthesized line. Design graphs using even/-odd mode analysis are provided, which indicate that the coupling coefficient can be easily controlled by adjusting the lumped inductors and capacitors in the synthesized line. When compared with a conventional one, the proposed coupler features good performances and significant reduction in coupling length.
    Finally, a miniaturized multilayer common-mode filter is also developed using the two-dimensional synthesized line along with the mushroom structure. It, outperforming the reported designs in terms of the occupied size, operates from 1.83 to 3.68 GHz with a common-mode rejection level of at least 15 dB.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1研究動機 1.2文獻探討 1.3研究貢獻 1.4論文架構 第二章 二維合成傳輸線 2.1 前言 2.2二維合成傳輸線 2.2.1電路佈局與設計原理 2.2.2 實驗結果與討論 2.2.3 結語 第三章 微型化枝幹耦合器、鼠競耦合器與威爾京森分波器 3.1 前言 3.2微型化枝幹耦合器 3.2.1 電路佈局與設計原理 3.2.2 實驗結果與討論 3.3 微型化鼠競耦合器 3.3.1 電路佈局與設計原理 3.3.2 實驗結果與討論 3.4 微型化威爾京森分波器 3.4.1 電路佈局與設計原理 3.4.2 實驗結果與討論 第四章 微型化3-dB寬面方向耦合器 4.1前言 4.2寬面方向耦合器基本原理 4.3微型化3-dB寬面方向耦合器 4.3.1電路布局與設計原理 4.3.2實驗結果與討論 第五章 微型化共模濾波器 5.2微型化共模濾波器 5.2.1電路布局與設計原理 5.2.2實驗結果與討論 5.3結語 第六章 結論 6.1總結 6.2未來發展 參考文獻

    [1] C.-C. Chen, C.-K.C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits, ” IEEE Trans. Microw. Theory Tech., vol. 52, no. 6, pp. 1637-1647, June 2004.

    [2] I. Toyoda, T. Hirota, T. Hiraoka, and T. Tokumitsu, “Multilayer MMIC branch-line coupler and broad-side coupler,” in Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, New Mexico, 1-3 June 1992, pp. 79–82.

    [3] Y.-C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE trans. Microwave Theory Tech., vol. 49, no. 3, pp. 476–479, Mar. 2001.

    [4] F.-R. Yang, K.-P. Ma, Y. Qian and T. I. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE trans. Microwave Theory Tech., vol. 47, no. 8, pp. 1509–1514, Aug. 1999.

    [5] A. Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34–50, Sep. 2004.

    [6] P.-L. Chi and T. Itoh, “Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity systems,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1207–1215, May. 2009.

    [7] I-H. Lin, C. Caloz, and T. Itoh, “A branch-line coupler with two arbitrary operating frequencies using left-handed transmission lines,” in IEEE-MTT Int. Symp. Dig., Philadelphia, PA, vol. 1, pp.325-327, 2003.

    [8] H.okabe, C. Caloz, and T. Itoh, “A compact enhanced-bandwidth hybrid ring using an artificial lumped-elemt left-handed transmission-line section,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 798-804, Mar. 2004.

    [9] K.-O. Sun, S.-J. Ho, C.-C. Yen and D. van der Weide, “A compact branch-line coupler using discontinuous microstrip lines,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 8, pp. 519–520, Aug. 2005.

    [10] K. Hettak, G. A. Morin, and M.G. Stubbs, “Compact MMIC CPW and asymmetric CPS branch-line couplers and Wilkinson dividers using shunt and series stub loading, ” IEEE Trans. Microwave Theory Tech., vol. 53, no. 5, pp. 1624–1635, May 2005.

    [11] K. W. Eccleston and S. H. M. Ong, “Compact planar microstrip line branch-line and rat race coupler couplers,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 10, pp. 2119–2125, Oct. 2003.

    [12] H.-S. Wu, H.-J. Yang, C.-J. Peng, and C.-K. C. Tzuang, “Miniaturized microwave passive filter incorporating multiplayer synthetic quasi-TEM transmission line,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2713–2720, Sep. 2005.

    [13] C.-W. Wang, C.-F. Yang, and T.-G. Ma, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2792 - 2801, Feb. 2007.

    [14] J.-D. Jin and Shawn S. H. Hsu, “A 0.18-um CMOS balanced amplifier for 24-GHz applications,” IEEE Trans. Solid-State Circuits, vol. 43, no. 2, pp. 440 – 445, Feb. 2008.

    [15] C. Y. Ng, M. Chongcheawchamnan, and I. D. Robertson, “Lumped-distributed hybrids in 3D–MMIC technology,” IEE Proc. Microw. Antenna Propag., vol. 151, no. 4, pp. 370–374, Aug. 2004.

    [16] T.-N. Kuo, Y.-S. Lin, C.-H. Wang, and C.-H. Chen, “A compact LTCC branch-line coupler using modified-T equivalent-circuit model for transmission line,” IEEE Microw. Wireless Comp. Lett., vol. 16, no. 2, pp. 90 - 92, Feb. 2006.

    [17] P. Mondal and A. Chakrabarty, “Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression,” IET Microw., Antennas and Propag., vol. 3, no. 1, pp. 109–116, Jan. 2009.

    [18] S.-C. Jung, Negra, R., Ghannouchi, and F.M., “A Design Methodology for Miniaturized 3-dB Branch-Line Hybrid Couplers Using Distributed Capacitors Printed in the Inner Area,” Microwave Theory Tech. , vol. 56, no. 12, pp. 2950–2953, Dec. 2008.

    [19] S.-S. Liao and J.-T. Peng, “Compact planar microstrip branch-line couplers Using the quasi-lumped elements approach with nonsymmetrical and symmetrical T-shaped structure,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3508–3514, Sept. 2006.

    [20] I. Haroun, C. Plett, Y.-C. Hsu, and D.-C. Chang, “Compact 60-GHz IPD-based branch-line coupler for system-on-package V-band radios,” IEEE Trans. Comp., Pack. and Manuf. Tech., accepted for publication.

    [21] F. Zhang, “Miniaturized and Harmonics rejected slow-wave branch-line coupler based on mircostrip electromagnetic bandgap element,” Microw. Optical Lett., vol. 51, no. 4, pp. 1080-1084, Apr. 2009.

    [22] C.-Y. Kuo, A.Y.-K. Chen, C.-M. Lee, and C.-H. Luo, “Miniature 60 GHz slow-wave CPW branch-line coupler using 90 nm digital CMOS process,” Electronics Lett., vol. 47, no. 16, pp. 924 - 925, Aug. 2011.

    [23] J. Wang, B.-Z. Wang, Y.-X. Guo, L.C. Ong, and S. Xiao, “A compact slow-wave microstrip branch-line coupler with high performance,” IEEE Microw. Wireless Comp. Lett., vol. 17, no. 7, pp. 501-503, July 2007.

    [24] C.-W. Tang, M.-G. Chen, “Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth,” IEEE Trans. Microw. Theory Tech. , vol. 55, no. 9, pp. 1926–1934, Sept. 2007.

    [25] S.-S. Liao, P.-T. Sun, N.-C. Chin, and J.-T. Peng, “A novel compact-size branch-line coupler,” IEEE Microwave Wireless Comp. Lett , vol. 15, no. 9, pp. 588–590, Sept. 2005.

    [26] C.-H Tseng, C.-H Wu, “Design of compact branch-line couplers using π-equivalent artificial transmission lines,” IEEE Trans. Antennas Propaga., vol. 6, no. 9, pp. 969-974, June 2012.

    [27] C.-H. Wu, C.-H. Tseng, “A compact branch-line coupler using π-equivalent shunt-stub-based artificial transmission lines,” Microwave Conference Proceedings, 2010 Asia-Pacific, pp. 802-805, Dec. 2010.

    [28] D. M. Pozar, Microwave Engineering, Wiley, 2005, 3rd Edition.

    [29] H. Okabe, C. Caloz, and T. Itoh, “A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 798-804, March 2004.

    [30] H.-C. Chiu, C.-H. Lai, and T.-G. Ma, “Miniaturized rat-race coupler with out-of-band suppression using double-layer synthesized coplanar waveguides,” in IEEE MTT-S Int. Microwave Symp. Dig., Montreal, QC, pp. 1-3, June 2012.

    [31] C. Wang, C. Lai, T. Ma, “Novel uniplanar synthesized coplanar waveguide and the application to miniaturized rat-race coupler,” in IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, pp. 708-711, May 2010.

    [32] J. He, D. Chen, B.-Z. Wang, “Miniaturized microstrip wilkinson power divider with EBG structure,” Microw. and Millimete Wave Tech. Conf. (ICMMT) , vol. 4, pp. 1515-1517, May 2012.

    [33] J. Wang, J. Ni, Y.-X. Guo, and D. Fang, “Miniaturized microstrip wilkinson power divider with harmonic suppression,” IEEE Microw. Wireless Comp. Lett., vol. 19, no. 7, pp. 440-442, July 2009.

    [34] C.-W. Wang, K.-H. Li, C.-J. Wu, and T.-G. Ma, “A miniaturized wilkinson power divider with harmonic suppression characteristics using planar artificial transmission lines,” in IEEE Asia-Pacific Microw. Conf. (APMC), Bangkok, Thailand, pp. 1-4, Dec. 2007.

    [35] R. K. Mongia, I. J. Bahl, P. Bhartia, and J. S. Hong, RF and Microwave Coupled-line Circuits, 2nd ed. Norwood, MA: Artech House, 2007.

    [36] C.-C. Wang, C.-H. Lai, and T.-G. Ma, “Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2266 - 2276, Aug. 2010.

    [37] Chieh-Pin Chang, Jui-Chieh Chiu, Hua-Yueh Chiu, and Yeong-Her Wang, “A 3-dB quadrature coupler using broadside-coupled coplanar waveguides,” IEEE Microw. Wireless Comp. Lett., vol. 18, no. 3, pp. 119 - 193, March. 2008.

    [38] T.-G. Ma, Y.-T. Cheng, “Miniaturised broadside coupler using coupled slow-wave artificial lines,” Electronics Letters, vol. 45, no. 10, pp. 511-512, May 2009.

    [39] D.-J. Kim, Y. Jeong, J.-H. Kang, J.-H. Kim, C.-S. Kim, J.-S. Lim, and D. Ahn, “A novel design of high directivity CPW directional coupler design by using DGS,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1239-1242, June 2005.

    [40] C.R.Paul, Introduction to Electromagnetic Compatibility, 2nd ed., Wiley & Sons,1992.

    [41] W.-T. Liu, C.-H. Tsai, T.-W. Han, and T.-L. Wu, “An embedded common-mode suppression filter for GHz differential signals using periodic defected ground plane,” IEEE Microw. Wireless Comp. Lett., vol. 18, no. 4, pp. 248-250, April 2008.

    [42] T.-L. Wu, C.-H. Tsai, T.-L. Wu, and T. Itoh, “A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure,” IEEE Microw. Wireless Comp. Lett., vol. 57, no. 4, pp. 848-855, April 2009.

    [43] Y. Pang, and Z. Feng, “A compact common-mode filter for GHz differential signals using defected ground structure and shorted microstrip stubs,” Int. Conf. Microw. and Millimeter Wave Tech. (ICMMT)., vol. 4, pp. 1-4, May 2012.

    [44] J. Naqui, A. Fernandez-Prieto, M. Duran-Sindreu, J. Selga, F. Medina, Mesa F. and F. Martin, “Split rings-based differential transmission lines with common-mode suppression,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2011.

    [45] J. Naqui, A. Fernandez-Prieto, M. Duran-Sindreu, F. Mesa, J. Martel, F. Medina, F. Martin, “Common-Mode suppression in microstrip differential lines by means of complementary split ring resonators: theory and applications,” IEEE Trans. Microw. Theory Tech.,vol. 60, no. 10, pp. 3023-3034, Oct. 2012.

    [46] J.-W. Tsai, and T.-G. Ma, “Compact dual-mode four-port network with quadrature-coupling and direct-thru transmission in each of the individual bands,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, pp. 1-4, 2011.

    [47] C.-H. Tsai, and T.-L. Wu, “A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative-permittivity metamaterials,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 195-202, Jan. 2010.
    [48] Y.-J. Cheng, H.-H. Chuang, C.-K. Cheng, and T.-L. Wu, “Novel differential-mode equalizer with broadband common-mode filtering for Gb/s differential-signal transmission,” IEEE Trans. Comp. Packaging and Manufacturing Tech., no. 99, March 2013.

    [49] C.-H. Tseng, and C.-L. Chang, “A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 7, pp. 2085-2092, July 2012.

    [50] K.-Y. Tsai, H.-S. Yang, J.-H. Chen, and Y.-J. E. Chen, “A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression,” IEEE Microw. Wireless Comp. Lett., vol. 21, no. 10, pp. 537-539, Oct. 2011.

    [51] W. R. Eisenstadt, B. Stengel, and B. M. Thompson, Microwave differential circuit design using mixed-mode s-parameters, MA: Artech House, 2006.

    [52] C.-L. Chang, C. -H Tseng, “Compact Wilkinson power divider using using two-section asymmetrical T-structures,” Electronics Lett. , vol. 49, no. 8, April . 2013

    [53] F. -R. Yang, K. -P. Ma, Y. Qian, T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Trans. Microw. Theory Tech., vol.47, no. 8, pp. 1509-1514, Aug 1999

    QR CODE