簡易檢索 / 詳目顯示

研究生: 鄭弘祥
Hung-Hsiang Cheng
論文名稱: 塊材過渡金屬硫屬化合物W(SxSe(1-x))2與石墨烯之異質結構電特性研究
Study of electrical characteristics of Bulk-W(SxSe(1-x))2/graphene heterostructure
指導教授: 李奎毅
Kuei-Yi Lee
林保宏
Pao-Hung Lin
口試委員: 李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
林保宏
Pao-Hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 石墨烯過渡金屬硫屬化合物化學氣相傳導法三元化合物異質接面二極體
外文關鍵詞: Graphene, Transition metal dichalcogenides, Chemical vapor transport, Ternary compound, Heterojunction diode
相關次數: 點閱:587下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

二維材料如今受到非常多的矚目, 特別是物理結構特性以及電性傳輸特性. 本研究將同樣為二維材料的石墨烯與不同比例成分之三元化合物W(SxSe(1-x))2製作成異質結構, 具有成分變化的W(SxSe(1-x))2使用化學氣相傳輸法而長成, 並使用X射線能量散佈光譜儀表面分析確定其元素比例含量, 透過精算莫爾數比例有效地控制材料晶體成分比例, 利用拉曼光譜儀了解硫硒比例的改變觀察其振動模態的變化, 再設置電晶體量測得到隨硫的比例含量增加會使得材料轉變成n型材料. 另外, 石墨烯為一個零能隙半導體, 本研究的石墨烯是利用銅箔經由化學氣相沉積法成長, 並且利用高解析電子顯微及拉曼光譜儀判斷石墨烯的厚度及層數, 在使用X射線電子能譜儀進一步確定吸附氧分子含量, 並製作成電晶體觀察石墨烯吸附氧氣而調變成為p型的半導體材料. 最後兩材料利用凡得瓦力的疊合成異質結構. 而Graphene/WS1.2Se0.8, Graphene/WS1.6Se0.4及Graphene/WS2為pn接面現象. 塊材的 W(SxSe(1-x))2隨硫成分增加, 與石墨烯堆疊可得知為pp異質接面轉變成pn接面, 這一系列塊材的調變期待可應用到不同領域的元件, 例如整流元件, 電晶體, 或者光電元件等等.


Two-dimensional (2D) materials have attracted much attention nowadays due to their physical and electrical properties. In this study, tungsten sulphoselenide (W(SxSe(1-x))2) materials of the ternary compounds were stacked with graphene, like W(SxSe(1-x))2, which is also a two-dimensional material. The W(SxSe(1-x))2 materials were formed by using chemical vapor transport (CVT) with chemical ingredients varied with sulfur / Selenium ratios. The elemental proportions of the tungsten sulphoselenide materials were confirmed by energy dispersive spectroscopy (EDS). These results indicated that the crystals could be modulated by adjusting the molar ratios of reactants (W/S/Se) accurately. Phonon vibration modes were monitored and analyzed by using Raman spectroscopy. The WS2-like A1g mode was red-shifted with decreasing sulfur content. In the field-effect transistor (FET) measurement of W(SxSe(1-x))2 materials, WSe2 (x=0) was a p-type semiconductor while WS2 (x=1) was a n-type semiconductor. The properties of W(SxSe(1-x))2 series materials were modified from p-type to n-type with sulfur content. The pristine graphene was grown by the chemical vapor deposition (CVD) system was a p-type semiconductor due to oxygen absorption from the air. The number of layers and property of graphene were examined by TEM microscopy and Raman scattering alternately. Then, the W(SxSe(1-x))2 materials which stacked with graphene formed heterojunctions through van der Waals force. Composition-related characteristics were examined throughout the heterostructures in the electrical experiment. With the increasing content of sulfur, the W(SxSe(1-x))2 materials with graphene were modulated from pp to pn heterojunction. The graphene/WS0.8Se1.2, graphene/WS1.6Se0.4, and graphene/WS2 heterostructures were all pn junctions. The more sulfur content in W(SxSe(1-x))2 of pn heterojunctions increased, the higher threshold voltages raised. Therefore, there is great potential in heterojunction-applications in the future, such as rectifiers, transistors, and optoelectronic sensors.

論文摘要 I Abstract II 目錄 IV 圖索引 VII 表索引 X 第一章 緒論 1 1.1二維半導體材料 1 1.1.1 過渡金屬硫屬化合物 2 1.1.1.1 二硒化鎢及二硫化鎢 5 1.1.1.2 成分變化的三元過渡金屬硫屬化合物 6 1.1.1.3過渡金屬硫屬化合物合成與製備 7 1.1.2 石墨烯 9 1.1.2.1 晶體結構 10 1.1.2.2 單層石墨烯聲子能帶 12 1.1.2.3 石墨烯拉曼光譜 13 1.1.2.4 石墨烯成長與製備 15 1.1.2.5 p型石墨烯 18 1.2 半導體元件結構 19 1.2.1 二維材料電晶體 19 1.2.2 pn接面 21 1.2.3 凡得瓦力異質結構 22 1.3 研究動機 22 第二章 實驗方法與設備 23 2.1 實驗流程圖 23 2.2 材料成長製作 24 2.2.1 過渡金屬硫屬化合物製備與合成 24 2.2.1.1 合成設備及其系統 25 2.2.1.2 W(SxSe(1-x))2晶體成長 28 2.2.2 石墨烯製備與成長 31 2.2.2.1 成長石墨烯條件及其系統 32 2.2.2.2 石墨烯蝕刻與轉印技術 34 2.3 表面結構與材料分析 35 2.3.1場發射穿透式電子顯微鏡 35 2.3.2 拉曼光譜儀 36 2.3.3 能量色散X射線光譜儀 37 2.3.4 X射線光電子能譜 39 2.4 電晶體量測 40 2.5 異質接面特性分析 41 2.5.1 整流電路應用 42 第三章 結果與討論 43 3.1 W(SxSe(1-x))2材料 43 3.1.1 穿透式電子顯微鏡影像 43 3.1.2 拉曼光譜特性分析 46 3.1.4 電晶體特性分析 50 3.2 p型石墨烯 53 3.2.1 拉曼光譜特性分析 53 3.2.2 穿透式電子顯微鏡影像 55 3.2.3 XPS光譜分析 56 3.2.4 電晶體狄拉克點分析 57 3.3 異質接面特性 58 3.4 異質結構能帶 64 3.5 半波整流實驗 66 第四章 結論 68 參考文獻 69

[1] G. E. Moore, "Cramming more components onto integrated circuits," Proc. Naecon. IEEE. Nat., vol. 86, pp. 82-85, 1998.
[2] C. A. Mack, "Fifty years of Moore's law," IEEE T. Semiconduct. M., vol. 24, pp. 202-207, 2011.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
[4] Q.-H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., vol. 7, pp. 699-712, 2012.
[5] A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures," Nature, vol. 499, pp. 419-425, 2013.
[6] R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, "Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets," Acc. Chem. Res., vol. 48, pp. 56-64, 2015.
[7] M. Xu, T. Liang, M. Shi, and H. Chen, "Graphene-like two-dimensional materials," Chem. Rev., vol. 113, pp. 3766-3798, 2013.
[8] L. Li, Y. Yu, G.-J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.-H. Chen, and Y. Zhang, "Black phosphorus field-effect transistors," Nat. Nanotechnol., vol. 9, pp. 372-377, 2014.
[9] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat. Nanotechnol., vol. 6, pp. 147-150, 2011.
[10] A. Kuc and T. Heine, "The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields," Chem. Soc. Rev., vol. 44, pp. 2603-2614, 2015.
[11] W. J. Zhao, Z. Ghorannevis, L. Q. Chu, M. L. Toh, C. Kloc, P. H. Tan, and G. Eda, "Evolution of electronic structure in atomically thin sheets of WS2 and WSe2," ACS Nano, vol. 7, pp. 791-797, 2013.
[12] H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, "Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2," Small, vol. 9, pp. 1974-1981, 2013.
[13] V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, "Liquid exfoliation of layered materials," Science, vol. 340, pp. 122641901-122641918, 2013.
[14] T. W. Scharf and S. V. Prasad, "Solid lubricants: a review," J. Mater. Sci., vol. 48, pp. 511-531, 2012.
[15] E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne, "MS2 (M=W, Mo) photosensitive thin films for solar cells," Sol. Energy Mater. Sol. Cells, vol. 46, pp. 115-121, 1997.
[16] C. T. Tye and K. J. Smith, "Hydrodesulfurization of dibenzothiophene over exfoliated MoS2 catalyst," Catal. Today, vol. 116, pp. 461-468, 2006.
[17] J. Chang, L. F. Register, and S. K. Banerjee, "Ballistic performance comparison of monolayer transition metal dichalcogenide MX2 (M = Mo, W; X = S, Se, Te) metal-oxide-semiconductor field effect transistors," J. Appl. Phys., vol. 115, pp. 0845061-0845069, 2014.
[18] T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, "Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics," Nat. Nanotechnol., vol. 8, pp. 100-103, 2013.
[19] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, "Emerging photoluminescence in monolayer MoS2," Nano Lett., vol. 10, pp. 1271-1275, 2010.
[20] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS2: a new direct-gap semiconductor," Phys. Rev. Lett., vol. 105, pp. 1368051-4, 2010.
[21] J. Jeon, S. K. Jang, S. M. Jeon, G. Yoo, Y. H. Jang, J. H. Park, and S. Lee, "Layer-controlled CVD growth of large-area two-dimensional MoS2 films," Nanoscale, vol. 7, pp. 1688-1695, 2015.
[22] S. K. Srivastava and B. N. Avasthi, "Layer type tungsten dichalcogenide compounds: their preparation, structure, properties and uses," J. Mater. Sci., vol. 20, pp. 3801-3815, 1985.
[23] W. J. Schutte, J. L. De Boer, and F. Jellinek, "Crystal structures of tungsten disulfide and diselenide," J. Solid State Chem., vol. 70, pp. 207-209, 1987.
[24] H. Liu, D.-W. Su, G.-X. Wang, and S.-Z. Qiao, "An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries," J. Mater. Chem., vol. 22, pp. 17437-17440, 2012.
[25] L.-H. Zeng, L.-L. Tao, C.-Y. Tang, B. Zhou, H. Long, Y. Chai, S.-P. Lau, and Y.-H. Tsang, "High-responsivity UV-vis photodetector based on transferable WS2 film deposited by magnetron sputtering," Sci. Rep., vol. 6, pp. 203431-203438, 2016.
[26] F. Perrozzi, S. M. Emamjomeh, V. Paolucci, G. Taglieri, L. Ottaviano, and C. Cantalini, "Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3, and NO2," Sens. Actuators, B, vol. 243, pp. 812-822, 2017.
[27] R. Ovcharenko, Y. Dedkov, and E. Voloshina, "Adsorption of NO2 on WSe2: DFT and photoelectron spectroscopy studies," J. Phys.-Condens. Mat., vol. 28, pp. 3640031-3640036, 2016.
[28] D. Ovchinnikov, A. Allain, Y. S. Huang, D. Dumcenco, and A. Kis, "Electrical transport properties of single-layer WS2," ACS Nano, vol. 8, pp. 8174-8181, 2014.
[29] N. R. Pradhan, D. Rhodes, S. Memaran, J. M. Poumirol, D. Smirnov, S. Talapatra, S. Feng, N. Perea-Lopez, A. L. Elias, M. Terrones, P. M. Ajayan, and L. Balicas, "Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors," Sci. Rep., vol. 5, pp. 89791-89798, 2015.
[30] J. Huang, L. Yang, D. Liu, J. Chen, Q. Fu, Y. Xiong, F. Lin, and B. Xiang, "Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications," Nanoscale, vol. 7, pp. 4193-4198, 2015.
[31] N. Huo, J. Yang, L. Huang, Z. Wei, S.-S. Li, S.-H. Wei, and J. Li, "Tunable polarity behavior and self-driven photoswitching in p-WSe2/n-WS2 heterojunctions," Small, vol. 11, pp. 5430-5438, 2015.
[32] J. Wang, D. Rhodes, S. Feng, M. A. T. Nguyen, K. Watanabe, T. Taniguchi, T. E. Mallouk, M. Terrones, L. Balicas, and J. Zhu, "Gate-modulated conductance of few-layer WSe2 field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states," Appl. Phys. Lett., vol. 106, pp. 1521041-1521045, 2015.
[33] M. Tosun, S. Chuang, H. Fang, A. B. Sachid, M. Hettick, Y. J. Lin, Y.-P. Zeng, and A. Javey, "High-gain lnverters based on WSe2 complementary field-effect transistors," ACS Nano, vol. 8, pp. 4948-4953, 2014.
[34] S.-H. Su, W.-T. Hsu, C.-L. Hsu, C.-H. Chen, M.-H. Chiu, Y.-C. Lin, W.-H. Chang, K. Suenaga, J.-H. He, and L.-J. Li, "Controllable synthesis of band-gap-tunable and monolayer transition-metal dichalcogenide alloys," Front. Energy Res., vol. 2, pp. 271-279, 2014.
[35] J.-Q. He, D.-W. He, Y.-S. Wang, and H. Zhao, "Photocarrier dynamics in transition metal dichalcogenide alloy Mo0.5W0.5S2," Opt. Express, vol. 23, pp. 33370-33377, 2015.
[36] A. H. Reshak and S. Auluck, "The linear and nonlinear optical properties of WSxSe2−x (x=0.5, 1.5, and 2.0)," Physica B, vol. 393, pp. 88-93, 2007.
[37] T. J. S. Anand and S. Shariza, "A study on molybdenum sulphoselenide (MoSxSe2−x, 0≤x≤2) thin films: growth from solution and its properties," Electrochim. Acta, vol. 81, pp. 64-73, 2012.
[38] M. K. Agarwal, M. N. Vashi, and A. R. Jani, "Growth and characterization of layer compounds in the series WSxSe2-x," J. Cryst. Growth, vol. 71, pp. 415-420, 1985.
[39] J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. von Son Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, "2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1-x) Se2x monolayers," Adv. Mater., vol. 26, pp. 1399-1404, 2014.
[40] X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, J. Jiang, A. Pan, Y. Huang, R. Yu, and X. Duan, "Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties," Nano Lett., vol. 16, pp. 264-269, 2016.
[41] J. Huang, W. Wang, Q. Fu, L. Yang, K. Zhang, J. Zhang, and B. Xiang, "Stable electrical performance observed in large-scale monolayer WSe2(1-x)S2x with tunable band gap," Nanotechnology, vol. 27, pp. 13LT011-13LT013, 2016.
[42] Q.-L. Feng, N.-N. Mao, J.-X. Wu, H. Xu, C.-M. Wang, J. Zhang, and L.-M. Xie, "Growth of MoS2(1-x)Se2x (x=0.41-1.00) monolayer alloys with controlled morphology by physical vapor deposition," ACS Nano, vol. 9, pp. 7450-7455, 2015.
[43] S. Umrao, J. Jeon, S.-M. Jeon, Y.-J. Choi, and S. Lee, "A homogeneous atomic layer MoS2(1-x)Se2x alloy prepared by low-pressure chemical vapor deposition, and its properties," Nanoscale, vol. 9, pp. 594-603, 2017.
[44] H. Yagoda and H. A. Fales, "The separation and determination of tungsten and molybdenum," J. Am. Chem. Soc., vol. 58, pp. 1494-1501, 1936.
[45] J. Mercier, "Recent developments in chemical vapor transport in closed tubes," J. Cryst. Growth, vol. 56, pp. 235-244, 1982.
[46] A. A. Al-Hilli and B. L. Evans, "The preparation and properties of transition metal dichalcogenide single crystals," J. Cryst. Growth, vol. 15, pp. 93-101, 1972.
[47] M. K. Agarwal, H. B. Patel, and K. Nagireddy, "Growth of single crystals of WSe2 by sublimation method," J. Cryst. Growth, vol. 41, pp. 84-86, 1977.
[48] M. K. Agarwal, K. Nagi Reddy, and H. B. Patel, "Growth of tungstenite single crystals by direct vapour transport method," J. Cryst. Growth, vol. 46, pp. 139-142, 1979.
[49] P. Joensen, R. F. Frindt, and S. R. Morrison, "Single-layer MoS2," Mater. Res. Bull., vol. 21, pp. 457-461, 1986.
[50] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. W. Chen, and M. Chhowalla, "Photoluminescence from chemically exfoliated MoS2," Nano Lett., vol. 11, pp. 5111-5116, 2011.
[51] M. Regula, C. Ballif, J. H. Moser, and F. Lévy, "Structural, chemical, and electrical characterisation of reactively sputtered WSx thin films," Thin Solid Films, vol. 280, pp. 67-75, 1996.
[52] A. K. Rai, R. S. Bhattacharya, J. S. Zabinski, and K. Miyoshi, "A comparison of the wear life of as-deposited and ion-irradiated WS2 coatings," Surf. Coat. Technol., vol. 92, pp. 120-128, 1997.
[53] Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, and Z.-X. Shen, "Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2," Nat. Nanotechnol., vol. 9, pp. 111-115, 2014.
[54] M. I. Serna, S.-H. Yoo, S. Moreno, Y. Xi, J. P. Oviedo, H. Choi, H. N. Alshareef, M.-J. Kim, M. Minary-Jolandan, and M. A. Quevedo-Lopez, "Large-area deposition of MoS2 by pulsed laser deposition with In situ thickness control," ACS Nano, vol. 10, pp. 6054-6061, 2016.
[55] L.-K. Tan, B. Liu, J.-H. Teng, S. Guo, H.-Y. Low, and K.-P. Loh, "Atomic layer deposition of a MoS2 film," Nanoscale, vol. 6, pp. 10584-10588, 2014.
[56] A. Jäger-Waldau, M. C. Lux-Steiner, G. Jäger-Waldau, and E. Bucher, "WS2 thin films prepared by sulphurization," Appl. Surf. Sci., vol. 70, pp. 731-736, 1993.
[57] A. L. Elias, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R. T. Lv, S.-M. Feng, A.-D. Long, T. Hayashi, Y.-A. Kim, M. Endo, H. R. Gutierrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. Lopez-Urias, H. Terrones, and M. Terrones, "Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers," ACS Nano, vol. 7, pp. 5235-5242, 2013.
[58] J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.-T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J.-J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, "Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science, vol. 331, pp. 568-571, 2011.
[59] S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, "Beyond graphene: progress in novel two-dimensional materials and van der Waals solids," in Annu. Rev. Mater. Res. vol. 45, D. R. Clarke, Ed., ed Palo Alto: Annual Reviews, 2015.
[60] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: buckminsterfullerene," Nature, vol. 318, pp. 162-163, 1985.
[61] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[62] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater., vol. 6, pp. 183-191, 2007.
[63] K. S. Kim, Y. Zhao, H. Jang, S.-Y. Lee, J.-M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
[64] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano Lett., vol. 9, pp. 4359-4363, 2009.
[65] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, 2008.
[66] X. Wang, L. Zhi, and K. Müllen, "Transparent, conductive graphene electrodes for dye-sensitized solar cells," Nano Lett., vol. 8, pp. 323-327, 2008.
[67] F. Schwierz, "Graphene transistors," Nat. Nanotechnol., vol. 5, pp. 487-496, 2010.
[68] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-dimensional atomic crystals," Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 10451-10453, 2005.
[69] D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, "Properties of graphene: a theoretical perspective," Adv. Phys., vol. 59, pp. 261-482, 2010.
[70] W. Fang, A.-L. Hsu, Y. Song, and J. Kong, "A review of large-area bilayer graphene synthesis by chemical vapor deposition," Nanoscale, vol. 7, pp. 20335-20351, 2015.
[71] S. Latil and L. Henrard, "Charge carriers in few-layer graphene films," Phys. Rev. Lett., vol. 97, pp. 0368031-0368034, 2006.
[72] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Phys. Rep., vol. 473, pp. 51-87, 2009.
[73] M. Yi and Z.-G. Shen, "A review on mechanical exfoliation for the scalable production of graphene," J. Mater. Chem. A, vol. 3, pp. 11700-11715, 2015.
[74] W. Norimatsu and M. Kusunoki, "Epitaxial graphene on SiC{0001}: advances and perspectives," Phys. Chem. Chem. Phys., vol. 16, pp. 3501-3511, 2014.
[75] J. Hass, W. A. de Heer, and E. H. Conrad, "The growth and morphology of epitaxial multilayer graphene," J. Phys.: Condens. Matter, vol. 20, pp. 32320201-32320228, 2008.
[76] X.-L. Li, G.-Y. Zhang, X.-D. Bai, X.-M. Sun, X.-R. Wang, E. Wang, and H.-J. Dai, "Highly conducting graphene sheets and Langmuir-Blodgett films," Nat. Nanotechnol., vol. 3, pp. 538-542, 2008.
[77] M. Acik and Y. J. Chabal, "A review on reducing graphene oxide for band gap engineering," J. Mater. Sci. Res., vol. 2, pp. 101-112, 2012.
[78] L. Kong, A. Enders, T. S. Rahman, and P. A. Dowben, "Molecular adsorption on graphene," J. Phys.: Condens. Matter, vol. 26, pp. 44300101-44300127, 2014.
[79] S.-M. Sze, Semiconductor devices: physics and technology: John Wiley & Sons, 2008.
[80] D. A. Neamen, Semiconductor physics and devices: McGraw-Hill Higher Education, 2003.
[81] A. Koma, "Van der Waals epitaxy for highly lattice-mismatched systems," J. Cryst. Growth, vol. 201–202, pp. 236-241, 1999.
[82] J.-H. Yu, H.-R. Lee, S.-S. Hong, D.-S. Kong, H.-W. Lee, H.-T. Wang, F. Xiong, S. Wang, and Y. Cui, "Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers," Nano Lett., vol. 15, pp. 1031-1035, 2015.
[83] X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, "Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions," Nat. Nanotechnol., vol. 9, pp. 1024-1030, 2014.
[84] B. Konkena, J. Masa, W. Xia, M. Muhler, and W. Schuhmann, "MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction," Nano Energy, vol. 29, pp. 46-53, 2016.
[85] W.-J. Su, H.-C. Chang, Y.-T. Shih, Y.-P. Wang, H.-P. Hsu, Y.-S. Huang, and K.-Y. Lee, "Two dimensional MoS2/graphene p-n heterojunction diode: fabrication and electronic characteristics," J. Alloys Compd., vol. 671, pp. 276-282, 2016.
[86] S. Kapatel, C. K. Sumesh, P. Pataniya, G. K. Solanki, and K. D. Patel, "Layer-engineered I-V characteristics of p-Si/WS2 van der Waals heterostructure diode," Eur. Phys. J. Plus, vol. 132, pp. 1911-1916, 2017.
[87] W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, "Synthesis of graphene and its applications: a review," Crit. Rev. Solid State Mater. Sci., vol. 35, pp. 52-71, 2010.
[88] X.-S. Li, W.-W. Cai, J.-H. An, S. Kim, J. Nah, D.-X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
[89] J. C. Russ, Fundamentals of energy dispersive X-ray analysis: butterworths monographs in materials: Butterworth-Heinemann, 2013.
[90] X. Zhang, X.-F. Qiao, W. Shi, J. B. Wu, D.-S. Jiang, and P.-H. Tan, "Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material," Chem. Soc. Rev., vol. 44, pp. 2757-2785, 2015.
[91] P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, "Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2," Opt. Express, vol. 21, pp. 4908-4916, 2013.
[92] H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, "Extraordinary room-temperature photoluminescence in triangular WS2 monolayers," Nano Lett., vol. 13, pp. 3447-3454, 2013.
[93] J. Kuhnert, A. Rahimi-Iman, and W. Heimbrodt, "Magneto photoluminescence measurements of tungsten disulphide monolayers," J. Phys.: Condens. Matter, vol. 29, pp. 08LT021-08LT025, 2017.
[94] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P.-H. Tan, and G. Eda, "Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2," Nanoscale, vol. 5, pp. 9677-9683, 2013.
[95] C. Sourisseau, F. Cruege, M. Fouassier, and M. Alba, "Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2," Chem. Phys., vol. 150, pp. 281-293, 1991.
[96] F. Schwierz, "Graphene transistors," Nat. Nanotechnol., vol. 5, pp. 487-496, 2010.
[97] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, "The structure of suspended graphene sheets," Nature, vol. 446, pp. 60-63, 2007.
[98] H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, "Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism," J. Mater. Chem., vol. 22, pp. 10452-10456, 2012.
[99] L. Du and Y. Lei, "Synthesis and photovoltaic characteristic of n-type CdSe nanobelts," Mater. Lett., vol. 73, pp. 95-98, 2012.
[100] P. Chen, T. T. Zhang, J. zhang, J. Xiang, H. Yu, S. Wu, X. Lu, G. Wang, F. Wen, Z. Liu, R. Yang, D. Shi, and G. Zhang, "Gate tunable WSe2-BP van der Waals heterojunction devices," Nanoscale, vol. 8, pp. 3254-3258, 2016.
[101] B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, "Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide," Nat. Nanotechnol., vol. 9, pp. 262-267, 2014.
[102] S.-H. Lee, D. Lee, W.-S. Hwang, E. Hwang, D. Jena, and W.-J. Yoo, "High-performance photocurrent generation from two-dimensional WS2 field-effect transistors," Appl. Phys. Lett., vol. 104, pp. 1931131-1931135, 2014.
[103] Y. Yi, C. Wu, H. Liu, J. Zeng, H. He, and J. Wang, "A study of lateral Schottky contacts in WSe2 and MoS2 field effect transistors using scanning photocurrent microscopy," Nanoscale, vol. 7, pp. 15711-15718, 2015.
[104] S. D. Karande, N. Kaushik, D. S. Narang, D. Late, and S. Lodha, "Thickness tunable transport in alloyed WSSe field effect transistors," Appl. Phys. Lett., vol. 109, pp. 142101, 2016.

無法下載圖示 全文公開日期 2022/07/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE