簡易檢索 / 詳目顯示

研究生: 劉俊辰
Chun-Chen Liu
論文名稱: 應用於400Gb/s光傳收模組之高速軟性電路板設計
High-speed Flexible Printed Circuit Boards for 400 Gb/s Optical Transceivers
指導教授: 李三良
San-Liang Lee
黃凡修
Fan-Hsiu Huang
口試委員: 曾昭雄
Chao-Hsiung Tseng
周一鳴
E-Min Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 93
中文關鍵詞: 光通訊高速軟性電路板
外文關鍵詞: Optical Communication, High-speed Flexible Printed Circuit Board
相關次數: 點閱:321下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物聯網(IOT)、大數據(Dig Data)的資訊應用發展,乙太網路的速率及頻寬需求快速成長,從100G到400G的乙太網路架構已然成形,光傳收模組中傳統的電路板連接方式已無法滿足高速傳輸的需求,為了有效的提升電路板及光傳收模組之間的速率及頻寬,需要藉由高速軟性電路板的連接,克服連接時尺寸限制及阻抗匹配之問題。
    本論文針對16×25 GHz光傳收模組之研究架構,設計並製作光傳輸模組及光接收模組之高速軟性電路板,利用差模訊號傳輸線以減少共模雜訊、運用凹槽焊點的設計、分析板材參數對高速訊號之影響及阻抗匹配情形,同時也完成高速軟板、光傳收模組與高速電路板三者連接,利用軟性電路板之可折撓、立體配線及高配線密度等優點,達成小面積接面的需求。
    量測結果中,與軟、硬板結合的光傳輸模組之25 Gb/s光眼形圖的SNR=6.19、ER=7.83,具備良好的眼圖品質;與軟、硬板結合的光接收模組藉由馬赫曾德電光調變器傳送訊號之電眼形圖為SNR=5.66,兩者量測結果皆顯示本論文設計之軟板可供25 Gb/s NRZ訊號傳輸使用。最終也成功量測到TOSA傳輸32 Gb/s PAM-4電眼形圖,可做為8×50 G光傳收模組之研究參考。


    The bit rate and bandwidth of Ethernet is growing rapidly following modern developments in technology such as IOT and big data. The structure and specifications of 100 G Ethernet and 400 G Ethernet have already been outlined. Traditional methods of printed circuit board (PCB) layout and connection are unable to satisfy the desired high-speed transmission with optical transceivers. To enhance the bit rate and bandwidth of PCB’s and optical transceiver connection effectively, high-speed flexible printed circuit boards (FPCB) are employed. They allow foldable and flexible assembly as well as improved wiring density and impedance matching with high-speed PCB’s and optical subassemblies.
    This thesis focuses on the realization of a 16"×" 25 GHz optical transceiver module, integrating the optical subassembly with high-speed flexible printed circuit boards. By taking advantage of differential signal transmission and the notch ground design of solder joints, common-mode noise can be reduced and the impedance matching problem can be mitigated, respectively. After deliberate design and verification with simulations we have realized the connection between the high-speed flexible printed circuit board, optical transmitter, optical receiver, and PCB. With these designs, we have solved the interface problems and have achieved a bandwidth greater than 28 GHz with our FPCB.
    The 25 Gb/s optical transmitter with FPCB and PCB demonstrates a SNR of 6.19 and ER of 7.83 and with clearly open eye diagram. By applying the FPCB to connect 25 Gb/s optical receiver subassembly with PCB and using an externally modulator light source as the input, the measured SNR is 5.66 and the eye diagram is clearly open. These measurement results shows that the FPCB design have great quality for 16"×" 25 Gb/s transceivers. Moreover, we have successfully used the FPCB-connector optical transmitter to transmit a 32 Gb/s PAM-4 signal.

    目錄 摘要 ABSTRACT 圖目錄 表目錄 第一章 序論 1.1 前言 1.2 研究動機 1.3 文獻探討 1.4 論文架構 第二章 軟性電路板與光次傳收模組 2.1 軟性電路板 2.1.1 軟板材料 2.1.2 軟板結構 2.1.3 高速軟性電路板 2.2 光次傳收模組元件 2.2.1 光次傳輸模組之元件 2.2.2 光次接收模組之元件 第三章 傳輸線分析 3.1 差動訊號傳輸 3.2 奇模態與偶模態傳輸原理 3.2.1 耦合傳輸線 3.2.2 奇模態傳輸分析 3.2.3 偶模態傳輸分析 第四章 軟性電路板傳輸線設計及分析 4.1 傳輸線設計 4.2 光傳收模組之軟板設計 4.3 光傳收模組之軟板分析 第五章 光傳輸模組元件量測與分析 5.1 軟性電路板之高頻特性量測 5.2 軟性電路板與光傳輸模組之眼圖量測 5.3 軟性電路板與光接收模組之眼圖量測 5.4 軟性電路板與光傳輸模組之PAM-4訊號量測 第六章 結論 6.1 結論 6.2 未來工作 參考文獻

    [1]http://www.ieee802.org/3/ba/
    [2]http://www.ieee802.org/3/bs/
    [3]http://www.ieee802.org/3/
    [4]D. D. Evans, ”Active Optical Cable transceiver packaging trends and die bonding case studies,” Semiconductor Technology International Conference (CSTIC), 15-16 March 2015
    [5]T. Uesugi, N. Okada, T. Saito, T. Yamatoya, Y. Morita, and A. Sugitatsu, “25 Gb/s EML TOSA Employing Novel Impedance-Matched FPC Design,” European Conference and Exhibition on Optical Communications (ECOC), 20-24 September 2009
    [6]K. Mochizuki, T. Murao, M. Shirao, Y. Kamo, N. Yasui, T. Toshimoto, D. Echizenya, M. Shimono, H. Kodera, M. Nogami, H. Aruga, and A. Sugitatsu, Mitsubishi Electric Corporation, “Assembly Technologies for Integrated Transmitter/Receiver Optical Sub-Assembly Modules,” The Institute of Electronics, Information and Communication Engineers(IEICE), Vol. E100.C No.2 pp.187-195 ,2017
    [7]T. Uesugi, N. Okada, T. Saito, T. Yamatoya, Y. Morita, and A. Sugitatsu, “25 Gbps EML TOSA Employing Novel Impedance-Matched FPC Design”, ECOC 2009, September, 20-24, 2009.
    [8]M. Shirao, N. Ohata, T. Fukao, T. Hatta, and H. Aruga, “A Miniaturized 43 Gbps EML TOSA Employing Impedance Matched FPC Connection”, OFC/NFOEC Technical Digest © 2013 OSA, March, 17-21, 2013.
    [9]吳承穎,「高頻軟板及焊點之最佳化設計」,國立高雄應用科技大學碩士論文,2015
    [10]張文謙,黃英勳,陳聰謀,方偉昌,李榮瑞,新通訊 2013 年 10 月號 152 期《技術前瞻》。
    [11]D. C. Thompson, O. Tantot, H. Jallageas, G. E. Ponchak, M. M. Tentzeris, J. Papapolymerou, “Characterization of Liquid Crystal Polymer (LCP) Material and Transmission Lines on LCP Substrates From 30 to 110 GHz.” IEEE Transactions on Microwave Theory and Techniques, Vol. 52, pp.1343-1353, NO. 4, April 2004
    [12]吳奇璋,「分佈反饋式雷射與行波式電致吸收調變器積體化元件製作」,國立台灣科技大學碩士論文,2010
    [13]劉侑昌,「千億位元率乙太網路光傳收模組規劃暨軟性印刷電路板設計製作」,國立台灣科技大學碩士論文,2016
    [14]Stephen H. Hall, Howard. L. Heck, Advanced Signal Integrity for High-Speed Digital Designs, 2009
    [15]S. H. Hall, G. W. Hall, J. A. McCall, High Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices, New York, Wiley, 2000
    [16]M. Shirao, N. Ohata, N. Yasui, K. Uto, T. Fukao, T. Hatta, H. Aruga, and T. Mizuochi, “A 1.55 μm 40 Gb/s EML TOSA Employing a Novel FPC Connection,” Journal of Lightwave Technology, vol.32 , pp.3344-3350, Oct.1, 1 2014

    QR CODE