研究生: |
何承恩 Cheng-En Ho |
---|---|
論文名稱: |
應用倒傳遞類神經網路進行電腦視覺在梭織布的織物組織辨識 Recognition of Fabric Weave Patterns Using Computer Vision based on Back-Propagation Neural Network |
指導教授: |
郭中豐
Chung-Feng Kuo |
口試委員: |
郭中豐
Chung-Feng Kuo 鍾國亮 Kuo-Liang Chung 施中揚 none |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 織物組織 、織物分析 、倒傳遞類神經網路 、電腦視覺 |
外文關鍵詞: | Fabric Weave Patterns, Fabric analysis, Back-Propagation Neural Network, Computer Vision |
相關次數: | 點閱:651 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
織物組織在織物分析上扮演著相當重要的角色,近來電腦視覺在織物組織辨識上的方法是利用織物影像中經緯浮點的辨識來決定織物組織,但因檢測時光學環境、織物及紗線的外觀差異性及檢測的電腦視覺方法穩定性仍有待加強,使得目前織物組織辨識的電腦視覺系統的實用性及容錯能力有待提升。所以本研究提出對梭織物的織物組織自動化辨識方法,目的在於提高辨識系統的實用性及容錯性。本研究利用兩階段的倒傳遞類神經網路來建構織物組織辨識的電腦視覺系統的分類器,其特徵值選擇了一階紋理及二階共生矩陣。由實驗結果可知本研究的織物組織辨識方法可正確地進行梭織物的織布物組織的自動化辯識,及驗証所提出之方法在織物分析上之可行性。
Enabling computer vision to recognize texture of different fabrics is an important factor in fabric analysis and a progress in research. Throughout the process, the warp and weft floating points of the fabric’s image determine the fabric’s texture. However, different optics environment, fabric materials, and computer vision method stability can lead to variable results, causing computer vision system’s usability and the fault-tolerant ability to be focused in research. We proposed a new automatic recognition algorithm for fabric weave pattern recognition. We also used neural network to construct the computer vision system to recognize fabric’s texture, and to increase this system’s reliability and fault-tolerance. In this study, we used first- and second-order statistics method and composed the classified system with two-step back-propagation network. Experimental results indicated that fabric patterns can be identified clearly by our proposed method.
1.Ravandi, S. A. H., and Toriumi, K., “Fourier Transform Analysis of Plain Weave Fabric Apperarnce,” Textile Res. J. 65(11), pp. 676-683 (1995).
2.Xu, B., “Identifying Fabric Structures with Fast Fourier Transform Techniques,” Textile Res. J. 66(8), pp. 496-506 (1996).
3.Haralick, R.M., K. Shaunmmugam, and I. Dinstein, “Textural Features for Image Classification,” IEEE Trans. Syst., Man Cybern., Vol. SMC-3(6), pp. 610-620 (1973).
4.黃宜真、張家慈、陳建文、施中揚,“電腦視覺在織布業上的發展與應用”,織布會刊,第 35期,第50-54頁(2003)。
5.Huang, C. C., Liu, S. C., and Yu, W. H., “Woven Fabric Analysis by Image Processing Part Ι: Identification of Weave Patterns,” Textile Res. J. 70(6), pp. 481-485 (2000).
6.Kang T. J., Choi S. H., and Kin, S. M., “Automatic Recognition of Fabric Weave Patterns by Digital Image Analysis,” Textile Res. J. 69(2), pp.77-83 (1999).
7.Kuo, C. F. J., Shih, C. Y., Kao, C. Y., and Lee, J. Y., “Automatic Recognition of Fabric Weave Patterns by Fuzzy C-Means Clustering Method,” Textile Res. J, Vol. 74(2), pp. 107-111 (2004).
8.Nixon, M. S., and Aguado, A. S., “Feature Extraction and Image Processing, Newnes,” Oxford, pp. 89-95 (2002).
9.Frank, H., Frank, K., Rudolf, K., and Thomas, R., “Fuzzy Cluster Analysis,” John Wiley & Sons, New York (1999).
10.Bezdek, J. C., “Pattern Recognition with Fuzzy Objective Function Algorithm,” Plenum Press, New York (1981).
11.Wang, l., and D.C. He, “A New Statistical Approach for Texture Analysis,” Photogrammetric Engineering & Remote Sensing, Vol. 56(1), pp. 61-66 (1990).
12.Sklansky, J., “Image Segmentation and Feature Extraction,” IEEE Trans. Syst., Man Cybern., Vol.8, pp. 238-247 (1978).
13.靳蕃、範俊波、譚永東,“神經網路與神經計算機原理.應用”,儒林圖書,台北,(1992)。
14.盧炳勳、曹登發,“類神經網路理論與應用”,全華圖書,台北,(1992)。
15.王進德、蕭大全,“類神經網路與模糊控制理論入門”,全華圖書,台北,(2005)。
16.葉怡成,“類神經網路模式應用與實作”,儒林圖書,台北,(2003)。
17.蘇木春、張孝德,“機器學習 - 類神經網路、模糊系統以及基因演算法”,全華圖書,台北,(2003)。