簡易檢索 / 詳目顯示

研究生: 鄭名峯
Ming-Feng Cheng
論文名稱: PCB 用環氧樹脂組成物之填料效應研究
Study of Fillers Effect on Epoxy Resin Composition for PCB Application
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱士軒
Shih-Hsuan Chiu
李俊毅
Jiunn-Yih Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 126
中文關鍵詞: 衝孔性剛性擺錘振動减衰儀光硬化光起始劑官能基衝擊能量銅箔基板溴化環氧樹脂相對漏電指數CEM-1落錘測試裂痕能量成本能量
外文關鍵詞: Rigid-Body Pendulum Rheometer, photo-curing, photo-initiator, brominated epoxy, Comparative tracking index, copper clad laminate
相關次數: 點閱:350下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本論文主要在探討PCB用環氧樹脂組成物的改質與應用研究,在本文共分三部份:第一部分在探討溴化環氧樹脂(Brominated Epoxy)在銅箔基板(Copper Clad Laminate)中的相對漏電指數(Comparative Tracking Index;CTI)特性之改善研究。藉由不同型態環氧樹脂及無機填充物效應對銅箔基板在抗漏電指數之影響。第二部份是在環氧樹脂配方上的改質,藉由落錘試驗(falling weight)的測試探討如何降低衝擊能量,提昇CEM-1銅箔基板的衝孔性改善(Punchability improvement)。第三部份則是以剛性擺錘振動減衰儀(Rigid-Body Pendulum Rheometer;RPT)建立一個即時觀察光硬化(Photo-curing)樹脂反應行為的評估方法,藉由過去評估方法所獲得之已知趨勢來印證此方法之可行性。由各試驗研究結果歸納如下:
    I. 相對漏電指數在溴化環氧樹脂及其銅箔基板之應用研究:
    1 基板表面CTI特性隨溴化環氧樹脂含量的增加而降低。
    2 在結構上若以酚醛樹脂改質之環氧樹脂,卽便無溴含量其CTI值與一般溴化環氧樹脂差異不大。
    3 在同系列之環氧樹脂中,隨環氧當量的增加,其CTI值隨之遞減。
    4 經由無機填充物種類及添加比例發現,以一適當溴化環氧樹脂比例及Al(OH)3 其CTI值可達600volts 以上。

    II. 填料效應及應用在CEM-1 銅箔基板衝孔性改善之研究
    1 在CEM-1芯材結構部份以不同的酚醛樹脂來改質,以較小分子量之酚醛樹脂PF-440當改質劑,可降低17%之衝擊能量。在酚醛樹脂不同的添加量變化效應對衝擊能量之影響,以 PF-5110當改質劑,固定其他組成,結果發現PF-5110添加量增加對衝擊能量並無明顯降低之效果。
    2 另外以TiO2,Al(OH)3,SiO2 三種無機填充料,分別在CEM-1 的芯材和表層材料添加改質,在芯材結構部份,其添加效應與酚醛樹脂改質劑添加效應相比,對降低衝擊能量效果是比較小,而且較無明顯趨勢。
    3 不同顆粒形狀之無機填充料在表層結構部份添加呈現了明顯且不同趨勢之效果,因Al(OH)3 是平板狀的結晶型態,其添加反而分散了衝擊應力,對於材料衝擊時之衝擊能量不降反昇,以球狀或針狀結晶型態之TiO2 及silica,有助於應力集中及應力的傳遞,故對衝擊能量皆能有明顯降低之效果,其中又以TiO2最為有效,當face 添加10 phrs TiO2時約可降低60% 衝擊能量,對改善其CEM-1之衝孔性改善有極為顯著之成效。

    III. 藉由剛性擺錘振動减衰儀即時方式在光硬化行為之評估研究
    1 以不同單體之官能基數及光起始劑濃度等參數,在環氧-壓克力系列研究,由文獻已知之趨勢,藉由RPT 評估方法,同樣可被印證觀察。
    2 在聚酯-壓克力系列以DPC (Differential Photocalorimetry)及RPT(Rigid-Body Pendulum Rheometer )方法的比較中,當以聚酯-壓克力(Polyester Acrylate)之寡聚合體添加不同比例Propoxylated Neopentyl-glycol Diacrylate之單體下,從DPC 之測試結果差異不大,而以RPT方法測試不但可比較出其反應速率,達平衡的時間且可從振動(oscillations)程度可比較出不同之交聯度等更多硬化過程之資訊。
    3 以RPT 試驗方法除可即時有效觀察光硬化反應行為外,其並可避免像DPC測試時在模擬類比參數設定上之困擾。


    Abstract
    The object of this study is fillers effect on epoxy resin composition for PCB application. There are three mainly parts of research have investigated in this thesis: First part is study of comparative tracking index (CTI) on brominated epoxy and its application of Copper Clad Laminate. Influence of different type of epoxy and addition of various fillers effect on characteristic of copper clad laminate has investigated. The second part is effeteness of various fillers and its application on CEM-1 laminate punchability improvement. The result of decreasing impact energy to enhance punchability improvement of CEM-1 laminate has been understood by falling weight testing. The third part is study of a real time evaluated method for photo curing behavior by means of Rigid-Body Pendulum Rheometer. All of experiment results been described briefly as follow:

    I. Study of Comparative Tracking Index on Brominated Epoxy and Its Application of Copper Clad Laminate
    1 CTI value of copper clad laminate decreases as bromine content increases.
    2 In halogen free epoxy comparison, the CTI value of Phenolic epoxy type lower than Bisphenol A type Epoxy.
    3 Effect of EEW on CTI value, as EEW value increases, CTI decreases.
    4 The effect of filler on improving CTI value, with the increase on the addition of filler, CTI value increases. Test showed that among the different inorganic fillers, 20~30%Al(OH)3 mixed with non brominated epoxy resin can improve CTI value to above 600 volts.

    II. Effect Study of Various Fillers and It’s Application on CEM-1 Laminate Punchability Improvement
    1 Through the use of the falling weight test to observe the impact process of CEM-1 combined with the material, from the relationship of the impact energy with the change in time, the material characteristic is clearly understood and the formulation to improve the goal of punchability can be adjusted.
    2 In the core structure, using phenolic resin of different molecular weight to modify the characteristic and adding different kinds of inorganic fillers, the modified effect of using a smaller molecular weight phenolic resin is more evident and can lower the impact energy by 17%.
    3 In the face structure characteristic change, inorganic filler particle crystal morphology has a visible effect on the impact energy. The crystal morphology as the flat-shaped Al(OH)3 has a dispersion function on impact stress, resulting in a larger Ep, Et values. TiO2, SiO2 crystal morphologies are spherical or needle-like, the addition of this particle crystal morphology inorganic filler on impact helps stress concentrate and stress propagation hence has a lower Ep and Et values, with TiO2 it is more effective in lowering the impact energy Et, while when 10 phrs TiO2 added to face structure, it can lower 60% of the impact energy.

    III. A Superior of Real Time Method to Evaluate Photocuring Resin by means of Rigid-Body Pendulum Rheometer
    1. Concentration of photo-initiator and reactive functionality of monomer affect on Epoxy acrylate photo-curing behavior has investigated by RPT method. This method was verified that trends of photo-curing behavior are not sufficient different from other previous evaluation of well know method.
    2. On subject of polyester acrylate photo-curing research to compare with DPC and RPT method, it has not sufficient of discrepancy of conversion by DPC (Differential Photocalorimetry) measured. Using the same formula test with RPT not only observed the reactive rate different with various blending ratio also clearly to understand resin cross linking related with discrepancy oscillation time while the reactive reach equivalent level.
    3. By RPT real time evaluation methods can effectively apprehend resin reaction to avoid the parameter hypothesis simulation method confusion which resulted by DPC method.

    目 錄 中文摘…………………………………...…………………………………………Ⅰ 英文摘……………………………………...………………………………………Ⅱ 誌謝………………………………………………………………………………...Ⅵ 目錄……………………………………………………………….………………..Ⅶ 符號索引………………………..………………………………………….……ⅩⅠ圖表索引………………………………………………………………………...ⅩⅡ 第一章 緒論……………………………………………………………………….2 1.1 研究背景與動機……………………………………………………………….2 1.2 研究的回顧與探討……………………………….……………..…….……….4 1.2.1填充料效應在環氧樹脂基材之影響研究 ……..…………………...……….4 1.2.2銅箔基板的應用……………………………….……………..………….……8 1.2.3光硬化反應評估之研究 ……………………….……………..…………....11 1.2.4影響光硬化反應之因素……………………………………………………..12 1.3 PCB 用環氧樹脂之特徵…………………………………………………….15 1.4 研究特徵與目的 ……………………………………………………..………..17 1.5 研究架構……………………………………………………………………….18 1.5.1填充料效應在銅箔基板的CTI電氣特性影響研究……………..………18 1.5.2填料效應在銅箔基板衝孔性改善之影響研究…………………..………19 1.5.3光聚合行為之評估研究…………………………………………..………20 1.6 參考文獻………………………………………………………………..………21 第二章 Study of Comparative Tracking Index on Brominated Epoxy and Its Application of Copper Clad Laminate 相對漏電指數在溴化環氧樹脂及其銅箔基板之應用研究..……………38 中文摘要…………………………………………………………………..…………39英文摘要…………………………………………………………………..………40 2.1 前言 …………………………………………………………………..……….41 2.2 實驗………………………………………………………………….…………42 2.2.1 材料……………………………………………………………………..…42 2.2.2 樣品製作…………………………………………………………………42 2.2.3 測試儀器………………………………………………………..……….42 2.2.4測試方法……………………………………………………………..……42 2.3 結果與討論………………………………………………………………………44 2.3.1溴含量對CTI 之影響……………………………………….………….…44 2.3.2化學結構及環氧當量對 CTI 之影響…………………………..………45 2.3.3不同無機添加物對CTI 之效果……………………………………….45 2.4 結論…………………………………………………………………………….46 2.5 參考文獻…………………………………………………………………………47 第三章 Effect Study of Various Fillers and Its Application on CEM-1 Laminate Punchability Improvement 填料效應及CEM-1銅箔基板沖孔性改善之研究……………………….57 中文摘要………………………………………………………………….…..………58 英文摘要……………………………………………………………….………..……59 3.1 前言…………………………………………………………………….………60 3.2 實驗…………………………………………………………………….………62 3.2.1 材料………………………………………………………….…..……62 3.2.2 樣品製作…………………………………………………..….………62 3.2.3 測量…………………………………………………………..…………63 3.3 結果與討論……………………………………..………………..………………64 3.3.1 芯材結構樹脂改質對落錘試驗結果之影響……………..……………64 3.3.2 表層結構樹脂配方改質對落錘試驗結果之影響…………..…………64 3.4 結論…………………………………………………………………….………66 3.5 考文獻……………………………………………………………………..……..67 第四章 A Superior of Real Time Method to Evaluate Photocuring Resin by means of Rigid-Body Pendulum Rheometer 藉由剛性擺錘振動减衰儀即時方式在光硬化行為之評估研究…….….78 中文摘要…………………………………………………….……………………….79 英文摘要…………………………………………………………………..…………80 4.1 前言……………………………………………………………..…..……………81 4.2 實驗………………………………………………………………………………82 4.2.1 材料…………………………...……………………………………………82 4.2.2 試片製備………………………………………………..….…………….82 4.2.3 RPT之測定…………………...……………………………………………82 4.2.4 DPC測定……………………………………………..…………………….83 4.3 結果與討論……………………………...………………………………….……84 4.3.1光起始劑濃度與樹脂反應官能基對光硬化行為之影響…………………84 4.3.2 DPC與RPT 聚酯壓克力的測試…………………………………………86 4.4 結論…………………………………………………………….………….……..87 4.5 參考文獻…………………………………………………..….…………………88 第五章 總結…………………………………………….……….……….……….102 作者簡介…………………………………………………………………….……104 著作目錄……………………………………………………………..……………..106 授權書…………………………………………………………………………….107 國立台灣科技大學博碩士論文授權書………………………………………….109 符 號 索 引 M,M1,M2 分別表示複合材料,樹脂,填充料之模數……………………………..5 KE Einstein 係數………………………………………………………….………….5 Vf 填充料體積比……………………………………………………..……..………..5 Pf 填充料最大裝填比………………………………………………………………..5 Ε:介電常數……………..……………………………………………….…...……...7 D:電流密度…………………………………………………………………….……7 E:電流強度……………………………………………………………………….…7 Ae:非極性因子(depolarization factor)……………………………………..……..…..7 F : 衝擊力impact force……………………………………………………..….….61 S : 衝頭位移距離Displacement of striker…………………………………………61 V : 衝頭速度Velocity of striker…………………………………………………….61 E : 衝擊能量impact energy……………………………………………………….61 Ei: InitialEnergy …………………………………………………………...……..61 Ep: Propagation Energy ……………………………………………………………61 Et: Total Energy ……………………………………………………………..….…..61 tc : Initial time ……………………………………………………………….……..61 tf : finished time……………………………………………………………….…..61 Log ∆:對數減衰率…………………………………………………………..……….83 C:轉化率…………………………………………………………………….……….83 k﹔速率常數………………………………………………………………..……….83 n,m為反應級數……………………………………………………………….…….83 圖 表 索 引 圖1-1 全球PCB 2000~2005’S產值趨勢…………………………………………32 圖1-2 環氧樹脂之中間體丙二酚與環氧氯丙烷…………………………………33 圖 1-3環氧樹脂之合成……………………………………………………………34 圖1-4環氧樹脂結構與特徵………………………………………………………45 圖1-5環氧樹脂主鏈的延伸之聚加成反應, (A) 環氧樹脂與胺鹽(B) 環氧樹脂與酸類…………………………………………………………………………36 圖 1-6環氧樹脂之交聯反應 (A)以氫氧基進行開環反應(B)以三級胺鹽進行形成離子型態(C)延續B進行開環產生另一新的離子……………………………..………………………………..……………47 圖 2-1 Chemical structure of epoxy series …………………………………………51 圖 2-2 Scheme of CTI test for specimen……………………………………………52 圖 2-3 Brominated epoxy (NPEB 454) content vs CTI value………………………53 圖 2-4 Effect of chemical structure (various EEW) on CTI Value…………………54 圖2-.5 CTI value of NPES 901resin within different DCD (2、3、5 phr)…………55 圖2-6 CTI outcome with different fillers……………………………………………56 圖3-1 Illustration of 1.6mm thickness CEM-1 laminate falling weight testing……71 圖3-2 Illustration of specimen fracture by falling weight test………..……………72 圖3-3 Unmodified face falling weight testing………………………………………73 圖3-4 Falling weight testing of face with addition Al(OH)3 filler modified………74 圖3-5 Falling weight testing of face with addition SiO2 filler modified………..…75 圖3-6 Falling weight testing of face with addition TiO2 filler modified……..……76 圖3.7 Falling weight testing of face with addition different ratio TiO2 filler modified.. …………………………………………………………………….…………….87 圖4-1 Chemical structure of experiment materials…………………….……………90 圖4-2 Sketch of Rigid-Body Pendulum Rheometer………………………………91 圖4-3 Typical curve of curing activity performed by Rigid-Body Pendulum Rheometer……………………………….…………………………...……92 圖4-4 RPT diagram of TPGDA within various photo-initiator concentrations…93 圖4-5 RPT diagram of M400 UV curable resin within various photo-initiator concentrations…………………………………………………………………94 圖4-6 RPT diagram of M6210 UV curable resin within various photo-initiator concentrations………………………………………….……………..……95 圖 4-7 RPT diagram of UV curable resin M400/M6210 mixed at equal portion within various photo-initiator concentrations…………………………………..………96 圖 4-8 RPT diagram of UV curable resin M400, M6210, M400/M6210(1:1) vs. fixed 0.5% of photo-initiator…………………………………………………..……97 圖 4-9 RPT diagram of UV curable resin with fixed 1.0% photo-initiator………98 圖 4-10 RPT diagram of curable with fixed 1.5% photo-initiator ………………99 圖 4-11 Conversion rate composed of different blending ratios of RCC+4217 by DPC …………………………………………………………………………………100 圖4-12 RPT diagram concentration effects of oscillating cycle by composed of RCC+4217…………………………………………………………...….……101 表1-1 PCB 發展演進重要記事………………………………………………..……26 表1-2 PCB產業相關產業鍊及供應商…………………………...………….…….27 表1-3 Value of KE and Pf……………….…………………………………………28 表1-4 UL 746E 相對漏電指數等級範圍………………………………………….29 表1-5各種光硬化顯影型介電材料…………….…………………………………30 表1-6基板常用環氧樹脂………………………………………………………….31 表 2-1 Series of epoxy resin…………………………………………………………48 表 2-2 Comparison of non-brominated epoxy bisphenol A type and phenolic type on CTI value……………………………………………………………..………49 表2-3 Electron Negativities of the elements…………………………………….…50表3-1 Comparison of various phenolic molecular weight …………………………68 表3-2 Comparison of the modification of core composition formula table and falling weight testing impact energy……………………………………………………69 表3.3 Summery for impact energy for various filler type in face addition…………70

    第一章
    參考文獻
    1. 台灣印刷電路板協會出版,”全球電路板供需分析與台灣未來機會”,2004
    2. 謝銘雲,台灣印刷電路板產業的競爭策略,國立台灣大學管理學院知識管理組碩士論文,2003
    3. Underwriters L aboratories Inc.,Standard for Safety, UL 746E, 16, 1984.
    4. F. Lin, J. Appl. Polym. Sci., Vol. 49, Issue 11, P: 1901 – 1908, 2003.
    5. Jae-Young Lee, Polymer Engineering & Science, Vol. 39, Issue 10 , P 1993 - 1997, 2004.
    6. Katsuyoshi Iisaka, J. Appl. Polym. Sci., Vol 20, Issue 3, P 813 - 823, 2003.
    7. S. M. Kulkarni, Kishore, J. Appl. Polym. Sci., Vol. 84, Issue 13, P: 2404 - 2410, 2002.
    8. Lisardo Núñez, J. Appl. Polym. Sci., Vol. 85, Issue 2, P: 366 - 370, 2002.
    9. GARG AMARC, J. Appl. Polym. Sci., Vol. 31, P: 225~242, 1998.
    10. Hiroaki Miyagawa, J. Appl. Polym. Sci., Vol. 96, Issue 2, P 281 - 287, 2005.
    11. Yoshinobu Nakamura, J. Appl. Polym. Sci., Vol. 45, Issue 7, P: 1281 – 1289, 1992.
    12. V. P. Perminov, Russian Journal of Applied Chemistry, Vol. 75, No. 4 P: 636 – 640, 2002.
    13. Lisardo Núñez, J. Appl. Polym. Sci., Vol. 83, Issue 7, P: 1528 - 1535, 2001.
    14. Carfagna, J. Appl. Polym. Sci., Vol. 93, Issue 5, P: 2031 - 2044, 2004.
    15. Mun-Fu Tse, J. Appl. Polym. Sci., Vol. 30, Issue 9, P: 3625 - 3647, 2003.
    16. L. Mascia, F. Zitouni, C. Tonelli, J. Appl. Polym. Sci., Vol 51, Issue 5, P: 905-923, 1994
    17. Nielsen L.E., Mechanical Properties of Polymer, Van Nostrand Reinhold, New York, 1962.
    18. Nielsen L.E., Mechanical Properties of Polymer and composite 2, MarcelDekker, New York, 1974.
    19. Lewis T.B. and Neilsen L.E., J. Appl. Polym. Sci.Vol 14, P: 1449, 1970.
    20. I. Galperin, J. Appl. Polym. Sci., Vol. 11, Issue 8, P: 1475-1481, 1967.
    21. S. N. Goyanes, P. G. König, J. D. Marconi, J. Appl. Polym. Sci., Vol 88, Issue 4, P: 883-892, 2003.
    22. P. Bajaj, N. K. Jha, R. Ananda Kumar, J. Appl. Polym. Sci., Vol. 44, Issue 11, P: 1921-1930, 1992.
    23. E. Sideridis, G. A. Papadopoulos, J. Appl. Polym. Sci., Vol. 93, Issue 1, P: 63-74, 2004.
    24. H. Harani, S. Fellahi, M. Bakar, J. Appl. Polym. Sci., Vol 71, Issue 1, P: 29-38, 1999.
    25. R. Bagheri, R. A. Pearson, J. Appl. Polym. Sci., Vol. 58, Issue 2, P: 427-437, 1995.
    26. M. M. Sain, B. V. Kokta, J. Appl. Polym. Sci., Vol. 48, Issue 12, P: 2181-2196, 1993.
    27. Sankarprasad Bhuniya, Basudam Adhikari, J. Appl. Polym. Sci., Vol. 90, Issue 6, P: 1497-1506, 2003.
    28. Yoshinobu Nakamura, J. Appl. Polym. Sci., Vol. 45, Issue 7, P: 1281-1289, 1992.
    29. P. Rosso, L. Ye, K. Friedrich, S. Sprenger, J. Appl. Polym. Sci., Published Online, 30 Jan 2006.
    30. S. M. Kulkarni, Kishore, J. Appl. Polym. Sci., Vol. 87, Issue 5, P: 836-841, 2003.
    31. Chenze Qi , J. Appl. Polym. Sci., Vol. 97, Issue 1, P: 38-43, 2005.
    32. Mun-Fu Tse, J. Appl. Polym. Sci., Vol. 30, Issue 9, P: 3625-3647, 1985.
    33. Yoshinobu Nakamura, J. Appl. Polym. Sci., Vol. 44, Issue 1, P: 151-158, 1992.
    34. Patton T.C., Paint Flow and Pigment Dispersion, Interscience, New York, P.443. 1964.
    35. O Gallot-Lavallée, J. Phys. D: Appl. Phys. Vol. 38 P: 2017 – 2025, 2005.
    36. L Flandin, J. Phys. D: Appl. Phys.,Vol. 38,P:144-155, 2005
    37. Jeng-Yueh Shieh, Angewandte Makromolekulare Chemie, Vol. 224, Issue 1 , P: 21 – 32, 2003.
    38. S. Sreehari Sastry, J. Appl. Polym. Sci., Vol. 36, Issue 7, P 1607 - 1615, 2003.
    39. Yang Rao, J. Appl. Polym. Sci., Vol. 83, Issue 5, P: 1084 - 1090, 2001.
    40. A Kawamoto, J. Appl. Polym. Sci., pp 619-22, 1991.
    41. P.O. Henk, T.W. Kortsen and T. Kvarts, Proc. 3rd Int. conf. on Prop. & App.of Diel. Mats. , IEEE, Vol. 11, pp 281-96, 1999.
    42. P.O. Henk, M. Henriksen, J.T. Holbell and J. Iqbal, High Perf. Polym, Trondheim pp 4.2:1-4.2:7,1992,
    43. F F T de Araujo, J. Phys. D: Appl. Phys.,Vol. 9 P 1025-1030, 1976
    44. Lee, H and Neville, k., Handbook of epoxy Resins, McGraw-Hill Book Co, New York, 1967.
    45. Bruins P.F., Epoxy resin Technology, John Wiley, New York, 1968.
    46. Neilsen L. E., Ind. Eng., Chem., Fundam.,13, No.1,1974.
    47. Neilsen L.E., J. Appl. Polym. Sci., Vol 17P: 3819, 1972.
    48. Sonntag, H. and Strenge, K., Coagulation and Stability of Disperse Systems, John Wiley & Sons, New York, 1972.
    49. Takayori Ito ,et al, Furukawa Review, No. 22, 2002
    50. Hsien-Tang Chiu, Jyh-Horng Wu, J. Appl. Polym. Sci. Vol. 98, Issue 3, P: 1206 – 1214, 2005.
    51. Hsien-Tang Chiu, Jyh-Horng Wu, Journal of Polymer Research, Vol.11, No. 4, P: 247 – 255, 2005
    52. Hsien-Tang Chiu, Jyh-Horng Wu, J. Appl. Polym. Sci., Vol. 97, Issue 3, P: 711 – 720, 2005.
    53. M. J. M. Abadie, J. Appl. Polym. Sci., Vol. 90, Issue 4, P: 1096-1101,2003
    54. Liping Zhang, J. Appl. Polym. Sci., Vol. 74, Issue 14, P: 3541-3547, 1999.
    55. V. amedytyt , J. Appl. Polym. Sci., Vol. 86, Issue 3, P: 579-588, 2002.
    56. M. J. M. Abadie, J. Appl. Polym. Sci., Vol. 96, Issue 5 , P: 1930 – 1935,2005
    57. Jianwen Yang, J. Appl. Polym. Sci.,Vol. 84, Issue 10 , P 1818 – 1831,2002
    58. M. DOSSOT, J. Appl. Polym. Sci., Vol. 78, Issue 12, P: 2061-2074,2000
    59. M. Ghaemy, J. Appl. Polym. Sci., Published Online: 9 Feb 2006.
    60. N. Davidenko, J. Appl. Polym. Sci., Vol. 97, Issue 3 , P 1016 – 1023,2005
    61. Xuesong Jiang, et al, J. Appl. Polym. Sci., Vol. 94, Issue 6, P 2395 – 2400, 2004.
    62. C. Esposito, J. Appl. Polym. Sci., Vol. 92, Issue 6, P: 3484 – 3491, 2004.
    63. Hong-Quan Xie, J. Appl. Polym. Sci.,Vol. 98, Issue 4, P: 1607-1614,2005
    64. Bong Taek Hong, J. Appl. Polym. Sci., Vol. 98, Issue 3, P: 1180-1185, 2005.
    65. Huanyu Wei, et al., J. Appl. Polym. Sci., 1 Vol. 90, Issue 1, P: 287-291, 2003.
    66. Q. Yu, J. Appl. Polym. Sci., Vol. 82, Issue 5, P: 1107-1117, 2001.
    67. Zhaohua Zeng, J. Appl. Polym. Sci., Vol. Issue 5 , P:1930 – 1935,2005
    68. A. S. Brar, J. Appl. Polym. Sci., Vol. 70, Issue 2, P: 373-381, 1998.
    69. Hongbo Lian, J. Appl. Polym. Sci., Vol. 97, Issue 1, P 185 – 194, 2005.
    70. C.Decker and B.Elzaouk, J. Appl. Polym. Sci.,Vol.64, P.833, 1997
    71. A.T.Doornkamp, Y.Y.Tan, Polymer Communications,Vol 31, P 362, 1990
    72. C.Decker,Polymer,Vol. 45,P 333,1994
    73. J.P.Fouassier,Hanser Publishers,Munich Vienna New York,1995
    74. Tomoyuki Matsumura, Mitsukazu Ochi, Kazuya Nagata, J. Appl. Polym. Sci. Vol. 90, Issue 7, P: 1980-1984, 2003.
    75. F. Lin, G. S. Bhatia, J. D. Ford, J. Appl. Polym. Sci, Vol 49, Issue 11, P: 1901-1908, 1993.
    76. R. P. Kreahling, D. E. Kline, J. Appl. Polym. Sci, Vol. 13, Issue 11, P: 2411-2425, 1969.
    77. C. P. Wong, Raja S. Bollampally, J. Appl. Polym. Sci, Vol. 74, Issue 14, P: 3396-3403, 1999.
    78. Hsien-Tang Chiu, Jung-Sheng Chung, J. Appl. Polym. Sci, Vol. 90, Issue 14 P: 3928-3933, 2003
    79. Ruediger Schueler, Juergen Petermann,Karl Schulte, Hans-Peter Wentzel, J. Appl. Polym. Sci, Vol. 63, Issue 13,P: 1741-1746,1997
    80. 劉恆瑜,國立台灣科技大學高分子研究所碩士論文,2001
    81. 郭義鵬,國立台灣科技大學高分子研究所碩士論文,2004
    82. 吳志宏,國立台灣科技大學高分子研究所博士論文,2005
    83. 蔡奇澄,國立台灣工業技術學院纖維及高分子研究所碩士論文,1993
    84. 辜信實,印制電路板用覆銅箔層壓板,化學工業出版社,2002
    第二章
    參考文獻
    1 Yeh-Fang Duann, Bor-Lin Chen, Teh-Hua TsaiVolume 95, Issue 6,. P: 1485-1492, 2005.
    2 IEC Publication 112, 3rd Edition.
    3 ASTM D3638-93 Standard Test Method for Comparative Tracking Index of Electrical Insulating Materials, Book of Standards Vol.10,02,1998.
    4 Safety of Information Technology Equipment, IEC 60950 (Geneva: International Electrotechnical Commission, 1999).
    5 ASTM D618 Practice for Conditioning Plastics and Electrical Insulating Materials for Testing
    6 ASTM D1711 Terminology Relating to Electrical Insulation
    7 Underwriters Laboratories Inc UL 746E 2nd ed. February 11, 1994.
    8 L.Pauling”The Nature of Chemical Bond”3rd ed., Cornell University Press.Ithaca NY., Chapter 3, 1960
    第三章
    參考文獻
    1 David A. Hazlebeck, Jan B. Talbot, AICHE Journal, Vol. 36, Issue 8, P: 1145– 1155, 2004.
    2 Kazunori Takamori, Hirohiko Furukawa, Yoshikatsu Morikawa, Tadashi Katayama, Shigeru Watanabe, Lasers in Surgery and Medicine ,Vol. 32, Issue 1 , P: 25– 31, 2003.
    3 A.Golovoy Vol 25, Issue 14 , P: 903- 908,Polymer Engineering and Science,2004
    4 Alexander A. Bibeau, Vol.15, Issue 4, P: 294 – 298, Polymer Engineering and Science, 2004.
    5 Naohiko Iwasaki, Hidekazu Takahashi, Yujin Aoyagi, Jin yue Jin, Kenichi Tonami and Fumio Nishimuras, J. J. Dent. Mate., Vol.22,No.3 P: 194~200, 2003
    6 C.Hillman, K.Rogers, A.Dasgupa, and M Pecht Circuit World, Vol 25, (3) P: 28-38, 1999.
    7 Sang Min Lee, Tae Ryong Hwang, Yang Sun Song, Jae Wook Lee, Polymer Engineering and Science, Vol. 44, Issue 6, P: 1170 – 1177, 2004.
    8 Yeh-Fang Duann, Bor-Lin Chen, Teh-Hua Tsai Vol 95, Issue 6, P: 1485-1492, Journal of Applied Polymer Science, 2005.
    9 Survasarathi Bose, P.A.Mahanwar, Vol.3 No.1, P: 23-31, Journal of Materials &Materials Characterization&Engineering, 2004.
    10 Chiu Hsien-Tang, CHENG Ming-Feng, Journal of Applied Polymer Science (online July,2005 accepted)
    第四章
    參考文獻
    1 Marleen Marc, Fundanmentals of microfabrication, pp.1,52., 1997
    2 Khan, M.A.; Idriss Ali, K.M.; Zaman, M.M.; Hossain, M.A., J. appl. polym. sci., 57, 953, 1995.
    3 Dietz, J. Eric; Peppas, Nikolaos A., polym J., 38, 3767, 1997.
    4 Culbertson, Bill M.; Wan, Qichun; Tong, Yuhua, J. macromol sci., 34, 2405(1997).
    5 Spillane, Phil, Adhes. age. , 38, 36(1995).
    6 Decker, C.; Zahouily, K., J. polym. sci. pol. Chem., 36, 2571,1998
    7 Beasley, John, Adhes. age. , 40, 20, 1997.
    8 Pavlinec, J.; Moszner, N., J. appl. polym. sci., 65, 165, 1997.
    9 Lecamp, L.; Youssef, B.; Bunel, C.; Lebaudy, P., Polymer, 40, 6313, 1999.
    10 Velankar, Sachin; Pazos, Jose; Cooper, Stuart L., J. appl. polym. sci., 62, 1361, 1996.
    11 Kim, Han Do; Kim, Tae Woo, J. appl. polym. sci., 67, 2153, 1998.
    12 Yang, Jie; Winnik, Mitchell A.; Ylitalo, David; DeVoe, Robert J., Macromolecules, 29, 7047, 1996.
    13 Bauchiere, Didier; Halary, Jean Louis; Monnerie, Lucien; Schirrer, Robert, J. appl. polym. sci., 75,638, 2000.
    14 Johansson, Mats; Glauser, Thierry; Rospo, Gianluca; Hult, Anders. J. appl. polym. sci., 75,612, 2000.
    15 Bongiovanni, R.; Malucelli, G.; Messori, M.; Pilati, F.; Priola, A.; Tonelli, C.; Toselli, M., J. appl. polym. Sci, 75, 651, 2000.
    16 Barbeau, Ph.; Gerard, J.F.; Magny, B.; Pascault, J.P.; Vigier, G., J. appl. polym. Sci, 37, 919, 1999.
    17 Kannurpatti, Anandkumar R.; Anseth, Jay W.; Bowman, Christopher N., Polymer, 39, 2507, 1998.
    18 Chiang, Wen-Yen; Cheng, Chun-Kung, J. appl. polym. sci., 64, 1625, 1997.
    19 Dietz, J. Eric; Elliott, Brian J.; Peppas, Nikolaos A., Macromolecules, 28, 5163, 1995.
    20 Kurdikar, Devdatt L.; Peppas, Nikolaos A., Polymer, 36, 2249, 1995.
    21 Bong Taek Hong,Kwon Shik Shin,Dae Su Kim,J Appl Polym Sci 98:1180-1185,2005
    22 Gozzelino,G.;Malucelli,G;Lambertini,V.,J.appl.polym.sci.,78,458,2000
    23 Yilmaz,Tulay;Ozarslan,Ozdemir;Yildiz,Emel;Kuyulu,Abdulkadir;Ekinci,Ekrem ,J.appl.polym.sci.,69,1837,1998
    24 Huang,Junlian;Huang,Xiaoyu;Liu,Hui,J.appl.polym.sci.,65,2095,1997
    25 Hsien-Tang Chiu, Jyh-Horng Wu ,J Appl Polym Sci, 97, 711-720, 2005
    26 J.E.Dietz and N.A.Peppas, Polymer, 31, p.95, 1990.
    27 N.S.Allen,”Photoinitiators for uv visible curing of coatings:mechanisms and properties”,J.of Photochemistry and Photobiology A:Chemistry, 100, p.101, 1996
    28 C.Decker and B.Elzaouk, J.Appl. Polym. Sci,65,p.833,1997

    QR CODE