簡易檢索 / 詳目顯示

研究生: 林靖恩
Jing-En Lin
論文名稱: 設計氮化矽耦合器應用於光纖至矽光子 晶片耦合與封裝
Design of Silicon Nitride Coupler for Fiber-to-Chip Coupling and Package
指導教授: 廖顯奎
Shien-Kuei Liaw
宋峻宇
Jiun-Yu Sung
口試委員: 楊富量
Fu-Liang YANG
徐世祥
Shih-Hsiang Hsu
游易霖
Yi-Lin Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: 矽光子邊緣耦合器透鏡光纖光纖陣列光學封裝
外文關鍵詞: Silicon photonics, edge coupler, lensed fiber, fiber array, optical package
相關次數: 點閱:303下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近幾年資料傳輸需求增加,矽光子被視為可行性高的解決方案,其擁有高頻寬、低成本、高速率、易集成性等特性,然而矽光子仍面臨許多挑戰,而其中光源與光電積體電路之間的整合為瓶頸之一,因此光耦合器扮演重要之角色。另外,氮化矽具有寬能隙、折射率對比大、傳輸損耗小和製作簡易的優點,廣泛的透明範圍能使得系統可工作至可見光範圍波段。本論文設計工作於1064 nm之氮化矽錐型與倒錐型耦合器並比較與量測,並從結果提出在限制下的優化方案,來提升耦合效率且降低偏差損耗。最後研究光學封裝所需的透鏡光纖與光纖陣列之原理與種類,配合本論文所設計之耦合器選擇適當規格去做光學封裝。
首先,介紹波導與邊緣耦合器基本原理與應用,探討造成邊緣耦合器的損耗種類,透過目前參考文獻而提出具體方案,如何在符合製程成本與限制下增加光纖耦合至晶片的耦合效率的方案。使用模擬軟體設計兩種基礎結構為倒錐形與錐形耦合器,耦合效率分別可達86%與51%,但因製程線寬限制在0.3 μm而被迫選擇錐形耦合器做為光纖至晶片耦合的橋樑,最後量測以此元件為做為I/O端的待測系統共四組,其分別有不同之線寬下的通道波導,為了找尋適當之線寬應用於1064 nm波長,但因樣本數不夠仍未得出結果而使光源無法侷限在通道波導內造成能量散失,其中線寬為0.75 μm有最佳之表現。最後將其與特殊光纖封裝並測試數個不同光纖組合所造成耦光結果的差異,在輸入與輸出端分別為模場直徑3 μm的透鏡光纖與模場直徑為6 μm單模光纖時有最低之總損耗-27.39 dB,並得到當輸入端光纖模場匹配元件模場且輸出端模場越大時有利於光纖至晶片的耦合。最後針對實際結果而設計雙尖端邊緣耦合器做為優化之方案,透過模擬可得到耦合效率值提升至84 %且偏差容忍度提升至±1.6 μm。


This paper designed a 1064 nm wavelength silicon nitride tapered coupler and an inversely tapered coupler. We not only researched the principles and types of lens fibers and fiber arrays but also selected appropriate specifications for optical packaging. Firstly, we introduced waveguides and edge couplers' basic principles and applications. Secondly, we discussed the types of losses that caused edge coupler decay. We proposed specific solutions based on current references to increase the coupling efficiency of the fiber-to-chip under the cost and process limit. Moreover, the simulation software was used to design the inverse taper coupler and the taper coupler, in which the coupling efficiency reached 86% and 51%, respectively. Due to the limitation of process line width to be 0.3 μm, we selected the taper coupler with a theoretical coupling efficiency value of 51% as the I/O. Thirdly, to find an appropriate line width to apply for the wavelength of 1064 nm, we tested four groups of systems, each of which had channel waveguides with different line widths. Nevertheless, the number of samples is insufficient, and the result cannot be obtained. Therefore, the light source cannot be confined in the channel waveguide, which causes energy loss. As a result, the linewidth of 0.75μm had the best performance. In the end, we packaged the chip with several different special fibers. When the input and output fibers were mode field diameters of 3 μm and 6 μm, respectively, the lowest loss was -27.39 dB. To improve the coupling efficiency and reduce misalignment loss, we designed the double-tip edge coupler to increase the theoretical coupling efficiency value to 84%.

目錄 I 圖目錄 III 摘要 VII Abstract VIII 第一章 緒論 1 1.1 前言 1 1.2 SOI與氮化矽 2 1.3 研究動機 3 1.3.1 光柵耦合器(Grating coupler) 4 1.3.2 邊緣耦合器(Edge coupler) 5 1.4 論文架構 5 第二章 波導與耦合原理 7 2.1波導基本原理 7 2.1.1波動方程式 7 2.1.2幾何波導原理 9 2.2耦合原理與損耗 11 2.2.1模態不匹配損耗 12 2.2.2菲捏耳反射損耗 13 2.3 光纖至晶片耦合 14 第三章 元件設計與模擬 19 3.1氮化矽波導 19 3.2倒錐形耦合器 21 3.3錐形邊緣耦合器 29 3.4雙尖端邊緣耦合器 34 第四章 光纖與晶片之封裝 42 4.1共封裝 42 4.2透鏡光纖 43 4.3光纖陣列與V-groove 47 第五章 元件量測與封裝分析 53 5.1量測平台 53 5.2元件測量與分析 56 5.3光學封裝與耦光光纖之選用 60 第六章 結論與未來展望 70 6.1結論 70 6.2未來展望 71 參考文獻 74

1.R. Soref, “The past, present, and future of silicon photonics”, IEEE J. Sel. Top. Quant., Vol. 12, pp.1678-1687, Dec 2006.

2.P. Dong, Y.K. Chen, G.H. Duan and D.T. Neilson, “Silicon photonic devices and integrated circuits”, Nanophotonics, Vol. 3, pp.215-228, Aug 2014.

3.An He, Xuhan Guo, Kangnian Wang, Yong Zhang, and Yikai Su, “Low loss, large bandwidth fiber-chip edge couplers based on silicon-on-insulator platform”, Journal Of Lightwave Technology, Vol. 38, pp.4780-4786,Sep 2020.

4.R, Baets, A.Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N.L. Thomas, G. Roelkens, D.V. Thourhout, P. Helin and S. Severi “Silicon photonics: silicon nitride versus silicon-on-insulator”, Optical Fiber Communications Conference and Exhibition, Aug 2016.

5.T. Zhu, Y. Hu, P. Gatkine, S. Veilleux and J. Bland-Hawthorn, “Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using si3n4/sio2 waveguides on silicon”, IEEE Photonics J., Vol. 8, Oct 2016.

6.J. Chovan, F. Uherek, E. Koza, J. Pavlov, D. Seyringer and L. Gajdošova, “Design and simulation of fiber to chip butt coupler for sin integrated photonics”, Optical Fiber Communications Conference and Exhibition, Aug 2016.

7.X. Xiao, Z. Li, T. Chu, H. Xu, X. Li, A. Nemkova, X. Kang, Y. Yu and JinZhong Yu, “Development of silicon photonic devices for optical interconnects”, Sci. China Technol. Sci., Vol. 56, pp.586-593, Mar 2013

8.Z. Zhang, B. Huang, Z. Zhang, C. Cheng, H. Liu, H. Li and H. Chen “Integrated silicon photonic interconnect with surface-normal optical interface”, Opt. Commun., Vol. 367, pp.206-213, May 2016

9.H.S. Dutta, A.K. Goyal, V. Srivastav and S. Pal, “Coupling light in photonic crystal waveguides: A review”, Photonics Nanostruct, Vol. 20, pp.41-58, Jul 2016.

10.D. Taillaert, F. Laere, Me. Ayre, W. Bogaerts, D. Thourhout, P. Bienstman and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides”, Jpn J Appl Phys, vol. 45, pp.6071-6077, Aug. 2006.

11.X Mu, Sa Wu, L.Cheng and H.Y. Fu, “Edge couplers in silicon photonic integrated circuits: a review”, Appl. Sci, Vol. 10, Feb 2020.

12.R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski and P Minzioni, “Coupling strategies for silicon photonics integrated chips”, Photonics Res., Vol. 7, pp.201-2, Feb 2019.

13.A. Dewanjee, J. Caspers, J. Aitchison and M. Mojahedi1, “Demonstration of a compact bilayer inverse taper coupler for Si-photonics with enhanced polarization insensitivity”, Opt. Express, Vol. 24, pp.28194-28203, Dec 2016.

14.K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers”, IEEE Photon. Technol. Lett., Vol. 5, pp.345-347, Mar1993.

15.R. Vilson, Almeida, R. R. Panepucci and M. Lipson, “Nanotaper for compact mode conversion”, Opt. Lett., Vol. 28, pp.1302-1304, Aug 2003.

16.M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler M. Frish and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics”, J. Vac. Sci. Technol. B, Vol. 21, pp.2897-2902, Dec 2003.

17.R. Holly, K. Hingerl, R. Merz and P. Hudek, “Fabrication of silicon 3D taper structures for optical fibre to chip interface”, Microelectron. Eng, Vol. 844, pp.1248-1251, Aug 2007.

18.J.K. Doylend and A.P. Knights, “Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides.” IEEE J. Sel. Top. Quant., Vol.12, pp.1363-1370, Dec 2006.

19.S. Romero-García, B. Marzban, F. Merget, B. Shen and J. Witzens, “Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides”, IEEE J. Sel. Top. Quant. Electron., Vol. 20, Aug 2014.

20.C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann and T. Tekin, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging”, IEEE J. Sel. Top. Quant. Electron., Vol. 17 , pp.498-509, Jun 2011.

21.P. O’Brien, L. Carrol, C. Eason and J. Lee “Packaging of silicon photonic devices”, SILICON PHOTONICS III: SYSTEMS AND APPLICATIONS, Vol. 122, 2016.

22.X. Wang, X. Quan , M. Liu and X. Cheng, “Silicon-nitride-assisted edge coupler interfacing with high numerical aperture fiber”, IEEE Photon. Technol. Lett., Vol. 31, pp.349-352, Mar 2019.

23.M.Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D. Xu, S. Janz, M. Dado and V. Vašinek “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides”, OPTICS EXPRESS, Vol. 24, pp.5026-5038, Mar 2016.

24.L. Chrostowski (2015). Silicon photonics design: from devices to systems, First Edition

25.P. R. Clifford, L. Michal, (2003), “Integrated photonics”, first edition

26.L. Gin, (2003) “Integrated photonics: fundamentals”

27.G. Ren, S. Chen , Y. Cheng and Y. Zhai, “Study on inverse taper based mode transformer for low loss coupling between silicon wire waveguide and lensed fiber”, Opt. Commun, Vol. 284, pp.4782-4788, Sep. 2011.

28.W. Liu. J. Zhang, L. Liu, D. Dai and Y. Shi, “High efficiency silicon edge coupler based on uniform arrayed waveguides with un-patterned cladding”, IEEE Photon. Technol. Lett., Vol. 32, pp.1077-1080, Sep 2020.

29.B. Bhandari, C. Im, K. Lee, S. Kim, M. Oh and S. Lee, “Compact and broadband edge coupler based on multi-stage silicon nitride tapers”, IEEE Photonics.J., Vol. 12, Dec 2020.

30.H. Park, S. Kim, J. Park, J. Joo, and G. Kim “A fiber-to-chip coupler based on Si/SiON cascaded tapers for Si-photonic chips”, Opt. Express, Vol. 21, pp.29313-29319,Dec 2013.

31.S. Sun, Y. Chen, Y. Sun, F. Liu and L. Cao, “Novel low-loss fiber-chip edge coupler for coupling standard single mode fibers to silicon photonic wire waveguides”, Photonics, Vol. 8, Mar 2021.

32.W. Wang; O. Z.Y. Yang; S. Tu; M. Lu; J. Chen and V. Lin “Fork type structure of silicon waveguide for optical efficiency optimization”, IEEE ECTC, Aug. 2018.

33.S. Wang, Q. Wang, J, Wang, Z. Tu, W Wang, L. Jia, M. Yu, Q. Fang and Y. Cai, “High-efficiency suspended three-tip edge coupler for Mid-infrared photonics”, Opt. Commun, Vol. 488, Jun 2021.

34.W. P. Huang and C. L. Xu, “High-performance silicon nitride fork-shape edge coupler”, Int. J. Numer. Model.: Electron. Netw. Devices Fields, Vol.9, pp.249-258, Aug 1996

35.M. D. Feit and J. A. Fleck, Jr, “Computation of mode properties in optical fiber waveguides by a propagating beam method”, Appl. Opt., Vol. 19, April 1980.

36.Y. Tu, P. Fu and D. Huang, “High-efficiency ultra-broadband multi-tip edge couplers for integration of distributed feedback laser with silicon-on-insulator waveguide”, IEEE Photonics J., Vol. 11, Aug 2019.

37.S. H. Tao, J. Song, Q. Fang, M. B. Yu, G. Q. Lo and D. L. Kwong, “Improving coupling efficiency of fiber-waveguide coupling with a double-tip coupler”, Opt. Express, Vol. 16, Issue 25, pp. 20803-20808, Dec 2008.

38.J.S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E.Temporiti and P. O'Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging”, IEEE J. Sel. Top. Quant. Electron, Vol. 22, Nov 2016.

39. L. Carroll, J.S. Lee., C. Scarcella, K. Gradkowski, M. Duperron, H.H. Lu, Y. hao, C. Eason, P. Morrissey, M. Rensing, S. Collins, H.Y. Hwang, and P. O’Brien, “Photonic packaging: transforming silicon photonic integrated circuits into photonic devices”, Appl. Sci., Vol. 6, Dec 2016.

40.M Uddin, H. Chan, T. Tsun and Y. Chan, “Uneven curing induced interfacial delamination of UV adhesive-bonded fiber array in V-groove for photonic packaging”, J. Light. Technol., Vol. 24, pp.1342-1349, Mar 2006.

41.J. V. Galán, P. Sanchis, G. Sánchez and J. Martí, “Polarization insensitive low-loss coupling technique between SOI waveguides and high mode field diameter single-mode fibers” Opt. Express, Vol. 15, pp.7058-7065, May 28

42.N. Lin, S. Hassan, X. Zhao, A. Veeraraghavan and J. Robinson, “Visible-range silicon nitride edge coupler with U-groove passive alignment”, J. Nanophotonics, Vol. 14.

無法下載圖示 全文公開日期 2027/09/17 (校內網路)
全文公開日期 2027/09/17 (校外網路)
全文公開日期 2027/09/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE