簡易檢索 / 詳目顯示

研究生: 賴玟佑
Wen-You Lai
論文名稱: 全聚酯自增強複合材料其開孔和栓孔拉伸性質之研究
The Study of Open Hole and Pin Hole Tensile Properties of Self-reinforced PET Composites
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 邱顯堂
Hsien-Tang Chiu
村上理一
Ri-Ichi Murakami
陳錦江
Jieng-Chiang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 104
中文關鍵詞: 自增強複合材料聚酯機械物性開孔拉伸性質栓孔拉伸性質
外文關鍵詞: self-reinforced composite, polyester, mechanical properties, open hole tensile properties, pin hole tensile properties
相關次數: 點閱:294下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在開發新世代回收PET自增強複合材料且具有阻燃特性之製程與材料研究技術能量,以量產型熱壓設備進行批次試量產設備建構,並導入連續式製程創造出具量產性和低生產成本的優勢,藉由紡織技術開發回收PET自增強混合包繞紗及複合織物,再進一步利用薄膜堆疊法製備複合材料並深入了解自增強複合材料之機械物性等特性研究。結果顯示回收PET自增強複合材料的拉伸強度高達121.3 MPa,彎曲強度高達94.3 MPa,衝擊吸收能量高達1103.2 J/m,回收阻燃PET自增強複合材料不僅擁有阻燃之特性且拉伸強度達110.7 MPa,彎曲強度達82.7 MPa,衝擊吸收能量達852.0 J/m。針對兩種複合材料之開孔拉伸性質,從複合材料的屈服強度和楊氏模數得知,兩種複合材料系統皆擁有對鑽孔不敏感之特性,且屈服和承載栓孔強度高達99.4 MPa和199.3 MPa。最後,針對產業的應用性和未來新穎的環保科技,致力於永續發展的解決方案,有其市場商機之積極意義,因此更凸顯此一材料與技術開發之其重要性。


    The tensile and bearing strength of notched composites is an important factor for composite structural design. However, no literature is available on the notch sensitivity and pin loaded effects of self-reinforced polymer composites. In this study, self-reinforced recycled poly (ethylene terephthalate) (srrPET) composites were produced by film stacking from fabrics composed of double covered uncommingled yarns (DCUYs). Composites specimens were subjected to uniaxial tensile, flexural and Izod impact tests and the related results compared with earlier ones achieved on srPET composites reinforced with non-recycled technical PET fibers. Further on, the effects of open circular holes on the tensile strength of srrPETs with various width-to-hole diameter (W/D) ratios of the specimens, the effects of pin-loaded tensile behavior of srrPET composites with various W/D ratios and edge distance-to-hole diameter (E/D) ratios of the specimens, the endurance limit of tension–tension fatigue of pin loaded composites and damage development in srrPETs assessed by located acoustic emission were studied.
    Damage development in srrPET composites indicates that srrPET composites have higher resistance of the composite to crack propagation. These results proved that srrPET composites is tough, ductile notch-insensitive materials and have superior load carrying capability.
    The experimental results indicate that the bilinear (yielding followed by post-yield hardening) stress-strain curves were recorded in the open hole tensile (OHT) measurements. The srrPET composites had extremely high yield strength retention (up to 142%) and high breaking strength retention (up to 81%) due to the superior ductile nature of the srrPET composites, which induces plastic yielding near the hole thereby reducing the stress concentration effect. The superior load carrying capability is found in srrPET composites and highly dependent on the W/D ratios. The bearing failure mode occurs in W/D>4, the composites has high yield bearing strength (99.4 MPa) and extremely high ultimate bearing strength (199.3 MPa) due to strong interfacial bonding between the fiber and matrix contributes higher bearing strength. The strong interfacial bonding in srrPET composites has higher fatigue cycles and shows good endurance ability.

    Table of Contents Abstract i List of Tables vi List of Figures viii Chapter 1: Introduction 1 1.1 Research Background 1 1.2 Project Objective 3 Chapter 2: Literature Review and Principle 4 2.1 Self-reinforced Polymer Composites 4 2.2 The Manufacturing Process of Thermoplastic Composites 5 2.3 The Open Hole Tensile Properties of Composites 7 2.4 The Pin Hole Tensile Properties of Composites 12 2.5 The Pin Hole Fatigue Properties of Composites 16 2.6 The Damage Development of Self-reinforced Polymer Composites (SRPCs) by Acoustic Emission (AE) 18 Chapter 3: Materials and Methods 20 3.1 Materials 20 3.2 Experimental Flow Chart 22 3.3 Sample Preparation 23 3.3.1 Preparation of Double Covered Uncommingled Yarn (DCUY) and Basket Fabric 23 3.3.2 Preparation of Self-reinforced PET Composites 25 3.4 Analysis 28 3.4.1 Stereo Microscope (SM) 28 3.4.2 Scanning Electron Microscope (SEM) 28 3.4.3 Differential Scanning Calorimetry (DSC) 29 3.4.4 Dynamic Mechanical Analysis (DMA) 29 3.4.5 Mechanical Tests 30 3.4.5.1 Uniaxial Tensile Test 30 3.4.5.2 Flexural Test 31 3.4.5.3 Izod Impact Test 32 3.4.5.4 Open Hole Tensile Test 33 3.4.5.5 Pin Hole Tensile Test 35 3.4.5.6 Pin Hole Fatigue Test 37 3.4.6 Acoustic Emission 38 3.4.6.1 Single Edge-notched Tensile with AE Recording 38 3.4.6.2 Crack Growth and Fracture 40 3.4.7 Limiting Oxygen Index (L.O.I) and UL-94 Tests 40 3.4.8 Void Content of Composites 41 Chapter 4: Results and Discussion 42 4.1 Uniaxial Tensile Properties 42 4.2 Flexural Properties 45 4.3 Impact Properties 48 4.4 Damage Development 50 4.4.1 Damage Growth Assessed by Acoustic Emission 50 4.4.2 J-integral Resistance Curves (JR) 54 4.5 Dynamic Mechanical Properties 57 4.6 Open Hole Tensile (OHT) Properties 59 4.6.1 Open Hole Tensile Results 59 4.6.2 Effect of Addition of Flame Retardant 63 4.6.3 Effect of Circular Hole on Open Hole Tensile Behavior 66 4.6.4 Effect of Stress and Strain Concentration Factors 67 4.6.5 Failure Mechanism of Open Hole Tensile Behavior 70 4.7 Pin Hole Tensile (PHT) Properties 73 4.7.1 Definition of Failure Mode of Pin Hole Tensile Behavior 73 4.7.2 Failure Mechanism of Pin Hole Tensile Behavior 75 Net-tension Failure 76 Bearing Failure 78 4.7.3 Pin Hole Tensile Results 80 4.7.4 Bearing Strength Versus E/D or W/D Ratios 83 4.8 Pin Hole Fatigue Properties 91 Chapter 5: Conclusions 94 Reference 97

    Reference
    [1] Awaja F, Pavel D. Recycling of PET. Eur Polym J 2005;41:1453-1477.
    [2] López MdMC, Ares Pernas AI, Abad López MJ, Latorre AL, López Vilariño JM, González Rodríguez MV. Assessing changes on poly(ethylene terephthalate) properties after recycling: Mechanical recycling in laboratory versus postconsumer recycled material. Mater Chem Phys 2014;147:884-894.
    [3] Karayannidis GP, Achilias DS. Chemical recycling of poly(ethylene terephthalate). Macromol Mater Eng 2007;292:128-146.
    [4] Karger-Kocsis J, Bárány T. Single-polymer composites (SPCs): Status and future trends. Compos Sci Technol 2014;92:77-94.
    [5] Fakirov S. Nano-/microfibrillar polymer–polymer and single polymer composites: The converting instead of adding concept. Compos Sci Technol 2013;89:211-225.
    [6] Kmetty Á, Bárány T, Karger-Kocsis J. Self-reinforced polymeric materials: A review. Prog Polym Sci 2010;35:1288-1310.
    [7] Fakirov S. Nano- and microfibrillar single-polymer composites: A Review. Macromol Mater Eng 2013;298:9-32.
    [8] Capiati NJ, Porter RS. The concept of one polymer composites modelled with high density polyethylene. J Mater Sci 1975;10:1671-1677.
    [9] Hine PJ, Ward IM, Jordan ND, Olley R, Bassett DC. The hot compaction behaviour of woven oriented polypropylene fibres and tapes. I. Mechanical properties. Polym 2003;44(4):1117-1131.
    [10] Hine PJ, Ward IM, Maaty MIA, Olley RH, Bassett DC. The hot compaction of 2-dimensional woven melt spun high modulus polyethylene fibres. J Mater Sci 2000;35:5091-5099.
    [11] Hine PJ, Ward IM. Hot compaction of woven poly(ethylene terephthalate) multifilaments. J Appl Polym Sci 2004;91:2223-2233.
    [12] Ward IM, Hine PJ. The science and technology of hot compaction. Polym 2004;45:1413-1427.
    [13] Hine PJ, Olley RH, Ward IM. The use of interleaved films for optimising the production and properties of hot compacted, self reinforced polymer composites. Compos Sci Technol 2008;68:1413-1421.
    [14] Zhuang X, Yan X. Investigation of damage mechanisms in self-reinforced polyethylene composites by acoustic emission. Compos Sci Technol 2006;66:444-449.
    [15] Abraham T, Banik K, Karger-Kocsis J. All-PP composites (PURE ) with unidirectional and cross-ply lay-ups: dynamic mechanical thermal analysis. Express Polym Lett 2007;1: 519–526.
    [16] Bárány T, Izer A, Karger-Kocsis J. Impact resistance of all-polypropylene composites composed of alpha and beta modifications. Polym Test 2009;28:176-182.
    [17] Abraham TN, Wanjale SD, Bárány T, Karger-Kocsis J. Tensile mechanical and perforation impact behavior of all-PP composites containing random PP copolymer as matrix and stretched PP homopolymer as reinforcement: Effect of β nucleation of the matrix. Compos Part A 2009;40:662-668.
    [18] Zhang JM, Reynolds CT, Peijs T. All-poly(ethylene terephthalate) composites by film stacking of oriented tapes. Compos Part A 2009;40:1747-1755.
    [19] Zhang JM, Peijs T. Self-reinforced poly(ethylene terephthalate) composites by hot consolidation of Bi-component PET yarns. Compos Part A 2010;41:964-972.
    [20] Fakirov S, Duhovic M, Maitrot P, Bhattacharyya D. From PET nanofibrils to nanofibrillar single-polymer composites. Macromol Mater Eng 2010;295:515-518.
    [21] Chen JC, Wu CM, Pu FC, Chiu CH. Fabrication and mechanical properties of self-reinforced poly (ethylene terephthalate) composites. Express Polym Lett 2011;5:228-237.
    [22] Wu CM, Chang CY, Wang CC, Lin CY. Optimum consolidation of all-polyester woven fabric-reinforced composite laminates by film stacking. Polym Compos 2012;33:245-252.
    [23] Schneider C, Kazemahvazi S, Åkermo M, Zenkert D. Compression and tensile properties of self-reinforced poly(ethylene terephthalate)-composites. Polym Test 2013;32:221-230.
    [24] Matabola K, De Vries A, Luyt A, Kumar R. Studies on single polymer composites of poly (methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties. Express Polym Lett 2011;5:635-642.
    [25] Pegoretti A, Zanolli A, Migliaresi C. Preparation and tensile mechanical properties of unidirectional liquid crystalline single-polymer composites. Compos Sci Technol 2006;66:1970-1979.
    [26] Pegoretti A, Zanolli A, Migliaresi C. Flexural and interlaminar mechanical properties of unidirectional liquid crystalline single-polymer composites. Compos Sci Technol 2006;66:1953-1962.
    [27] Kimble LD, Bhattacharyya D, Fakirov S. Biodegradable microfibrillar polymer-polymer composites from poly(L-lactic acid)/poly(glycolic acid). Express Polym Lett 2015;9:300-307.
    [28] Gao C, Meng L, Yu L, Simon GP, Liu H, Chen L, Petinakis S. Preparation and characterization of uniaxial poly(lactic acid)-based self-reinforced composites. Compos Sci Technol 2015;117:392-397.
    [29] Bhattacharyya D, Maitrot P, Fakirov S. Polyamide 6 single polymer composites. Express Polym Lett. 2009;3:525-532.
    [30] Raburn J, Hine PJ, Ward IM, Olley RH, Bassett DC, Kabeel MA. The hot compaction of polyethylene terephthalate. J Mater Sci 1995;30:615-622.
    [31] Rojanapitayakorn P, Mather PT, Goldberg AJ, Weiss RA. Optically transparent self-reinforced poly(ethylene terephthalate) composites: molecular orientation and mechanical properties. Polym 2005;46:761-773.
    [32] Yao D, Li R, Nagarajan P. Single-polymer composites based on slowly crystallizing polymers. Polym Eng Sci 2006;46:1223-1230.
    [33] Duhovic M, Bhattacharyya D, Fakirov S. Nanofibrillar single polymer composites of poly(ethylene terephthalate). Macromol Mater Eng 2010;295:95-99.
    [34] Svensson N, Shishoo R, Gilchrist M. Manufacturing of thermoplastic composites from commingled yarns-A review. J Thermoplast Compos Mater 1998;11:22-56.
    [35] Mäder E, Rausch J, Schmidt N. Commingled yarns – Processing aspects and tailored surfaces of polypropylene/glass composites. Compos Part A 2008;39:612-623.
    [36] Jiang J, Chen N. Preforms and composites manufactured by novel flax/polypropylene cowrap spinning method. J Compos Mater 2012;46:2097-2109.
    [37] Gobi Kannan T, Wu CM, Cheng KB. Effect of different knitted structure on the mechanical properties and damage behavior of Flax/PLA (Poly Lactic acid) double covered uncommingled yarn composites. Compos Part B 2012;43:2836-2842.
    [38] Wu CM, Lin PC, Tsai CT. Fabrication and mechanical properties of self-reinforced polyester composites by double covered uncommingled yarn. Polym Compos, 2015, Published online, DOI: 10.1002/pc.23531.
    [39] ASTM Standard D5766/D5766M–02. Standard test method for open hole tensile strength of polymer matrix composite laminates. Annual book of ASTM standards 2002.
    [40] Girão Coelho AM, Mottram JT. A review of the behaviour and analysis of bolted connections and joints in pultruded fibre reinforced polymers. Mater Des 2015;74:86-107.
    [41] Thoppul SD, Finegan J, Gibson RF. Mechanics of mechanically fastened joints in polymer–matrix composite structures – A review. Compos Sci Technol 2009;69:301-329.
    [42] Vieille B, Taleb L. About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: Notched and unnotched laminates. Compos Sci Technol 2011;71:998-1007.
    [43] Mariatti M, Nasir M, Ismail H, Backlund J. Effect of hole drilling techniques on tensile properties of continuous fiber impregnated thermoplastic (COFIT) plain weave composites. J Reinf Plast Compos 2004;23:1173-1186.
    [44] O’Higgins RM, McCarthy MA, McCarthy CT. Comparison of open hole tension characteristics of high strength glass and carbon fibre-reinforced composite materials. Compos Sci Technol 2008;68:2770-2778.
    [45] Yudhanto A, Watanabe N, Iwahori Y, Hoshi H. The effects of stitch orientation on the tensile and open hole tension properties of carbon/epoxy plain weave laminates. Mater Des 2012;35:563-571.
    [46] Vieille B, Aucher J, Taleb L. Comparative study on the behavior of woven-ply reinforced thermoplastic or thermosetting laminates under severe environmental conditions. Mater Des 2012;35:707-719.
    [47] Hao A, Yuan L, Chen JY. Notch effects and crack propagation analysis on kenaf/polypropylene nonwoven composites. Compos Part A 2015;73:11-19.
    [48] Gobi Kannan T, Wu CM, Cheng KB. Influence of laminate lay-up, hole size and coupling agent on the open hole tensile properties of flax yarn reinforced polypropylene laminates. Compos Part B 2014;57:80-85.
    [49] Pandita SD, Nishiyabu K, Verpoest I. Strain concentrations in woven fabric composites with holes. Compos Struct 2003;59:361-368.
    [50] Neuber H. Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. J Appl Mech 1961;28:544-550.
    [51] Rajan VP, Zok FW. Stress distributions in bluntly-notched ceramic composite laminates. Compos Part A 2014;60:15-23.
    [52] Filippini M. Stress gradient calculations at notches. Int J Fatigue 2000;22:397-409.
    [53] ASTM Standard D953-09. Standard Test Method for Bearing Strength of Plastics. Annual book of ASTM standards 2009.
    [54] Aktas A, Husnu Dirikolu M. An experimental and numerical investigation of strength characteristics of carbon-epoxy pinned-joint plates. Compos Sci Technol 2004;64:1605-1611.
    [55] Yýlmaz T, Sýnmazçelik T. Investigation of load bearing performances of pin connected carbon/polyphenylene sulphide composites under static loading conditions. Mater Des 2007;28:520-527.
    [56] Khashaba UA, Sebaey TA, Alnefaie KA. Failure and reliability analysis of pinned-joints composite laminates: Effects of stacking sequences. Compos Part B 2013;45:1694-1703.
    [57] Asi O. An experimental study on the bearing strength behavior of Al2O3 particle filled glass fiber reinforced epoxy composites pinned joints. Compos Struct 2010;92:354-363.
    [58] Asi O. Effect of different woven linear densities on the bearing strength behaviour of glass fiber reinforced epoxy composites pinned joints. Compos Struct 2009;90:43-52.
    [59] Aktaş A, İmrek H, Cunedioğlu Y. Experimental and numerical failure analysis of pinned-joints in composite materials. Compos Struct 2009;89:459-466.
    [60] İçten BM, Karakuzu R. Progressive failure analysis of pin-loaded carbon–epoxy woven composite plates. Compos Sci Technol 2002;62:1259-1271.
    [61] Okutan B, Aslan Z, Karakuzu R. A study of the effects of various geometric parameters on the failure strength of pin-loaded woven-glass-fiber reinforced epoxy laminate. Compos Sci Technol 2001;61:1491-1497.
    [62] Sola C, Castanié B, Michel L, Lachaud F, Delabie A, Mermoz E. On the role of kinking in the bearing failure of composite laminates. Compos Struct 2016;141:184-193.
    [63] ASTM Standard D6873. Standard Practice for Bearing Fatigue Response of Polymer Matrix Composite Laminates. Annual book of ASTM standards 2014.
    [64] ASTM Standard E739-91. Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain-life (ε-N) fatigue data. Annual book of ASTM standards 1991.
    [65] Aktaş A. Bearing strength of carbon epoxy laminates under static and dynamic loading. Compos Struct 2005;67:485-489.
    [66] Herrington PD, Sabbaghian M. Fatigue failure of composite bolted joints. J Compos Mater 1993;27:491-512.
    [67] Yilmaz T, Sinmazcelik T. Bearing strength of pin-connected polymer composites subjected to dynamic loading. Polym Compos. 2010;31:25-31.
    [68] Romhány G, Bárány T, Czigány T, Karger-Kocsis J. Fracture and failure behavior of fabric-reinforced all-poly(propylene) composite (Curv®). Polym Adv Technol 2007;18:90-96.
    [69] Izer A, Stocchi A, Bárány T, Pettarin V, Bernal C, Czigány T. Effect of the consolidation degree on the fracture and failure behavior of self-reinforced polypropylene composites as assessed by acoustic emission. Polym Eng Sci 2010;50:2106-2113.
    [70] Romhánya G, Wu CM, Lai WY, Karger-Kocsisa J. Damage Development in Self-Reinforced PET Composites Assessed by Located Acoustic Emission and Thermography: Effects of Flame Retardant and Recycled PET. Compos Sci Technol 2016, Accepted in press.
    [71] 鄭勝宇.急冷技術製備全聚酯自增強複合材料及其機械性質之研究.逢甲大學碩士畢業論文;碩士畢業論文: 2014,台灣.
    [72] Hagstrand PO, Bonjour F, Månson JAE. The influence of void content on the structural flexural performance of unidirectional glass fibre reinforced polypropylene composites. Compos Part A 2005;36:705-714.
    [73] Karger-Kocsis J. Instrumented impact testing of a glass swirl mat-reinforced reaction injection-molded polyamide block copolymer (NBC). J Appl Polym Sci 1992;45:1595-1609.
    [74] Romhány G, Czigány T, Karger-Kocsis J. Determination of J–R curves of thermoplastic starch composites containing crossed quasi-unidirectional flax fiber reinforcement. Compos Sci Technol 2006;66:3179-3187.
    [75] Young WC, Budynas RG. Roark's formulas for stress and strain: McGraw-Hill New York; 2002.
    [76] Caprino G, Giorleo G, Nele L, Squillace A. Pin-bearing strength of glass mat reinforced plastics. Compos Part A 2002;33:779-785.

    無法下載圖示 全文公開日期 2021/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE