簡易檢索 / 詳目顯示

研究生: 王元懋
Yuan-Mao Wang
論文名稱: 觀測室內辦公環境的熱舒適度
A Study on Thermal Comfort in an Indoor Office Environment
指導教授: 林怡均
Yi-Jiun Lin
口試委員: 田維欣
Wei-Hsin Tien
溫琮毅
Tsrong-Yi Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 141
中文關鍵詞: 熱舒適度熱中性偏好溫度90% 與 80% 可接受度的溫度範圍自然通風室內辦公環境
外文關鍵詞: Thermal comfort, Thermal neutrality, Preferred temperature, 90% and 80% acceptability temperature ranges, Natural ventilation, Indoor office environment
相關次數: 點閱:158下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用主觀的問卷調查與客觀的物理參數測量,探討學校辦公室的室內熱舒適度。本研究採用 ASHRAE Standard 55-2020 室內環境熱舒適標準自製的主觀問卷調查,以及採用 Fanger 提出的人體熱平衡理論形成熱舒適度指標理論,透過客觀的物理參數測量計算熱舒適度指標。進行實驗的場所在實驗期間為自然通風,位於亞熱帶地區,為臺灣科技大學中的一間辦公室。學校辦公室內部有 6 名研究生,研究生年齡介於 20 至 30 歲,每天辦公約 8 小時。本研究使用 PMV 模型(Predicted Mean Vote Model)與適應性模型(Adaptive Model)預測客觀的室內熱舒適度,以及使用平均熱感投票(Mean Actual Sensation Vote, MASV)觀測主觀的室內熱舒適度。PMV 模型主要以客觀的物理參數測量,以及參與本研究問卷的人員的一些主觀條件(著衣量)為基礎。適應性模型以學校辦公室與室外的環境客觀條件為基礎。MASV 由主觀問卷調查中獲得。實驗的日期為 2022/1/17 至 2022/5/31,主觀問卷調查與客觀的物理參數測量同時進行,共收集 321 筆主觀問卷調查資料。本研究使用 PMV 模型與 MASV 計算熱中性(Thermal Neutrality)以及 80\% 與 90\% 可接受度的溫度範圍,以及使用 MASV 計算偏好溫度(Preferred Temperature)。比較 PMV 模型與適應性模型預測的投票百分比與 ASV 投票百分比,實驗結果表明著衣量為 1 clo 的 PMV 模型適合於氣候較為涼爽的月份(1 與 2 月份),而適應性模型適合於氣候較為炎熱的月份(3 至 5 月份)。熱中性與偏好溫度的實驗結果表明,1 至 5 月份以 PMV 模型預測的熱中性在 22.8°C 至 23.5°C 的範圍,以 MASV 計算的熱中性在 23.2°C 至 24.2°C 的範圍,以 MASV 計算的偏好溫度在 23.5°C 至 24.7°C 的範圍;1 至 4 月份以 MASV 計算的偏好溫度都比以 MASV 計算的熱中性更高,顯示參與本研究問卷的人員在 1 至 4 月份期望比以 MASV 計算的熱中性更溫暖的室內熱環境;而 5 月份以 MASV 計算的偏好溫度比以 MASV 計算的熱中性更低,顯示參與本研究問卷的人員在 5 月份期望比以 MASV 計算的熱中性更涼爽的室內熱環境。80\% 與 90\% 可接受度的溫度範圍之實驗結果表明,1 至 5 月份以 PMV 模型預測的 80\% 與 90\% 可接受度的溫度範圍分別為 19.7°C 至 26.2°C,以及 21.0°C 至 25.1°C;以 MASV 計算的 80\% 與 90\% 可接受度的溫度範圍分別為 18.4°C 至 29.4°C,以及 20.6°C 至 27.2°C。各月份以 PMV 模型預測的 80\% 或 90\% 可接受度之溫度範圍,全部比以 MASV 計算的 80\% 或 90\% 可接受度之溫度範圍更窄。各月份以 PMV 模型預測的 80\% 可接受度的溫度範圍下限與以 MASV 計算的 80\% 可接受度的溫度範圍下限之差異,全部比以 PMV 模型預測的 80\% 可接受度的溫度範圍上限與以 MASV 計算的 80\% 可接受度的溫度範圍上限之差異更小,在以 PMV 預測與以 MASV 計算的 90\% 可接受度的溫度範圍之實驗結果中也顯示相似的結果。


    This study uses the subjective questionnaire survey and the objective physical parameter measurements to investigate the indoor thermal comfort of a school office. The ASHRAE Standard 55-2020 indoor environmental comfort criteria are adopted to form the homemade subjective questionnaire survey. The human body heat balance theory proposed by Fanger is adopted to form the theory of the thermal comfort index, and the thermal comfort index is calculated by the objective physical parameter measurements. The school office uses natural ventilation, and is located at National Taiwan University of Science and Technology in the subtropical climate zone. Six students between the age of 20–30 stayed in the school office, for approximately eight hours a day, during the measurement period. The Predicted Mean Vote (PMV) model and Adaptive model are used to predict the objective indoor thermal comfort, and the Mean Actual Sensation Vote (MASV) is used to observe the subjective indoor thermal comfort. The PMV model is mostly based on the objective physical parameter measurements and some subjective conditions of participating students (clothing level). The Adaptive model is based on the objective conditions of the school office and the outdoor environment. The MASV is obtained from the subjective questionnaire survey. The subjective questionnaire survey and the objective physical parameter measurements were conducted simultaneously from 17th January to 31th May, 2022. There are 321 samples collected from the subjective questionnaire survey responses. The PMV model and MASV are used to calculate the thermal neutrality and 80\% and 90\% acceptability temperature range, and the MASV is used to calculate the preferred temperature. Compared to the ASV percentage results, the experimental results show that the PMV model with clothing level of 1 (clo) was more suitable for the cooler months (January and February), but the Adaptive model was more suitable for the warmer months (March to May) during the measurement period. The thermal neutrality of PMV model ranged from 22.8 to 23.5°C, the thermal neutrality of MASV ranged from 23.2 to 24.2°C, and the preferred temperature of MASV ranged from 23.5 to 24.7°C during the measurement period. The preferred temperatures of MASV were higher than the thermal neutrality of MASV, indicating that the participating students expected an warmer indoor thermal environment than the thermal neutrality of MASV from January to April. The preferred temperature of MASV was lower than the thermal neutrality of MASV, indicating that the participating students expected an cooler indoor thermal environment than the thermal neutrality of MASV in May. The 80\% and 90\% acceptability temperature ranges of PMV model during the measurement period were 19.7–26.2°C and 21.0–25.1°C, respectively. The 80\% and 90\% acceptability temperature ranges of MASV during the measurement period were 18.4–29.4°C and 20.6–27.2°C, respectively. All of the 80\% or 90\% acceptability temperature ranges of PMV model were narrower than the 80\% or 90\% acceptability temperature ranges of MASV during the measurement period. All of the differences between the lower limits of the 80\% acceptability temperature ranges of PMV model and the lower limits of the 80\% acceptability temperature ranges of MASV were smaller than the differences between the upper limits of the 80\% acceptability temperature ranges of PMV model and the upper limits of the 80\% acceptability temperature ranges of MASV, and the similar results were shown in the experimental results of the 90\% acceptability temperature ranges of PMV model and MASV during the measurement period.

    摘要............................................................................................................................i Abstract..................................................................................................................iii 誌謝...........................................................................................................................v 目錄.........................................................................................................................vii 符號索引..................................................................................................................xi 表目錄....................................................................................................................xv 圖目錄...................................................................................................................xvii 緒論...........................................................................................................................1 研究動機與目的.......................................................................................................1 文獻回顧...................................................................................................................2 人體與環境的熱平衡...............................................................................................2 影響人體熱舒適度的主要因素...............................................................................9 熱舒適度指標 (Thermal Comfort Indices).......................................................11 現有建築的熱舒適標準 (Criteria for Comfort in Existing buildings)..........19 通風建築室内熱舒適度........................................................................................23 論文架構及内容....................................................................................................26 濕空氣基礎理論....................................................................................................27 濕空氣線圖基本介紹............................................................................................27 濕空氣線圖物理參數介紹....................................................................................28 濕空氣學基本理論................................................................................................29 大氣的成分............................................................................................................29 濕空氣熱力性質....................................................................................................29 濕空氣調節過程....................................................................................................31 實驗設置與方法....................................................................................................33 實驗設置................................................................................................................33 實驗場所................................................................................................................33 實驗儀器................................................................................................................34 實驗方法................................................................................................................34 實驗資料之分類....................................................................................................34 計算方法................................................................................................................36 實驗結果與討論....................................................................................................43 實驗組別與實驗資料............................................................................................43 室内外熱環境量測結果........................................................................................43 1月份室内外熱環境量測結果..............................................................................44 2月份室内外熱環境量測結果..............................................................................45 3月份室内外熱環境量測結果..............................................................................45 4月份室内外熱環境量測結果..............................................................................46 5月份室内外熱環境量測結果..............................................................................46 熱舒適標準適合性的分析結果............................................................................46 1月份熱舒適標準適合性的分析結果..................................................................48 2月份熱舒適標準適合性的分析結果..................................................................48 3月份熱舒適標準適合性的分析結果..................................................................49 4月份熱舒適標準適合性的分析結果..................................................................50 5月份熱舒適標準適合性的分析結果..................................................................51 熱中性與偏好溫度................................................................................................51 1月份熱中性與偏好溫度......................................................................................52 2月份熱中性與偏好溫度......................................................................................52 3月份熱中性與偏好溫度......................................................................................53 4月份熱中性與偏好溫度......................................................................................53 5月份熱中性與偏好溫度......................................................................................54 90% 與 80% 可接受度的溫度範圍計算結果.....................................................55 1月份 90% 與 80% 可接受度的溫度範圍..........................................................55 2月份 90% 與 80% 可接受度的溫度範圍..........................................................55 3月份 90% 與 80% 可接受度的溫度範圍..........................................................56 4月份 90% 與 80% 可接受度的溫度範圍..........................................................56 5月份 90% 與 80% 可接受度的溫度範圍..........................................................57 結論與建議............................................................................................................59 結論........................................................................................................................59 建議........................................................................................................................61 參考文獻................................................................................................................62 附錄一: PMV模型分析舒適區法的計算機碼 (Python語言)..........................115 附錄二: 熱感問卷調查内容................................................................................116 附錄三: 計算1月份偏好溫度的計算機碼 (Matlab語言).................................117 作者簡歷..............................................................................................................119

    [1] 經濟部能源局,《中華民國110年能源統計手冊》,臺北市:經濟部能源局出版,2022年6月。
    [2] 經濟部能源局,<2020年非生產性質行業能源查核年報>,網址:https://www.ecct.org.tw/Knowledge/knowledge_more?id=62fa76c65477425facb630f0803994e3,上網日期: 2022年5月31日。
    [3] 吳明進,〈淺談夏季季風〉,地球科學園地,第5期,財團法人臺北縣地球科學文教基金會,1998年3月。
    [4] P. Fanger, Thermal Comfort: Analysis and Applications in Environmental Engineering. Krieger Publishing Company, Reprint ed., 1982.
    [5] Thermal Environmental Conditions for Human Occupancy, ANSI/ASHRAE Standard 55, 2020, [Online]. Available: https://www.ashrae.org/technical-resources/standards-and-guidelines/read-only-versions-of-ashrae-standards.
    [6] ASHRAE Handbook-Fundamentals, SI ed., American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., Peachtree Corners, GA, USA, 2021.
    [7] Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, ISO 7730:2005.
    [8] Y. A. Cengel and A. J. Ghajar, "HEATING AND COOLING OF BUILDINGS," in Heat and Mass Transfer: Fundamentals and Applications, Fifth ed. New York, NY, USA: McGraw-Hill Education, 2015, ch. 16.
    [9] T. Inouye, F. K. Hick, R. W. Keeton, J. Losch, and N. Glickman, "Effect of relative humidity on heat loss of men exposed to environments of 80, 76 and 72F," in ASHVE Transactions, vol. 59, pp. 329-346, 1953.
    [10] P. Fanger, "Calculation of Thermal Comfort: Introduction of a Basic Comfort Equation," in ASHRAE Transactions, vol. 73, Cambridge University Press, 1967.
    [11] E. ASMUSSEN and M. NIELSEN, "Studies on the Regulation of Respiration in Heavy Work," Acta Physiologica Scandinavica, vol. 12, pp. 171-188, 1946.
    [12] F. D. K. Liddell, "Estimation of energy expenditure from expired air," Journal of Applied Physiology, vol. 18, no. 1, pp. 25-29, 1963.
    [13] J. W. McCutchan and C. L. Taylor, "Respiratory heat exchange with varying temperature and humidity of inspired air," Journal of Applied Physiology, vol. 4, no. 2, pp. 121-135, 1951.
    [14] A. Gagge, A. Burton, and H. Bazett, "A Practical System of Units for the Description of the Heat Exchange of Man with His Environment," Science, vol. 94, no. 2445, pp. 428-430, 1941.
    [15] E. A. McCullough, B. W. Jones, and J. Huck, "A Comprehensive Database for Estimating Clothing Insulation," Final Rep. ASHRAE RP-411, 1984.
    [16] D. DuBois and E. DuBois, "A formula to estimate approximate surface area, if height and weight are known," Archives of Internal Medicine, vol. 17, pp. 863-871, 1916.
    [17] N. H. Wong and S. S. Khoo, "Thermal comfort in classrooms in the tropics," Energy and Buildings, vol. 35, no. 4, pp. 337-351, 2003.
    [18] R.-L. Hwang, T.-P. Lin, and N.-J. Kuo, "Field experiments on thermal comfort in campus classrooms in Taiwan," Energy and Buildings, vol. 38, no. 1, pp. 53-62, 2006.
    [19] H. Mayer, J. Holst, P. Dostal, F. Imbery, and D. Schindler, "Human thermal comfort in summer within an urban street canyon in Central Europe," Meteorologische Zeitschrift, vol. 17, no. 3, pp. 241-250, 2008.
    [20] N. Kantor and J. Unger, "The most problematic variable in the course of human-biometeorological comfort assessment - the mean radiant temperature," Open Geosciences, vol. 3, no. 1, pp. 90-100, 2011.
    [21] N. Walikewitz, B. Janicke, M. Langner, F. Meier, and W. Endlicher, "The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions," Building and Environment, vol. 84, pp. 151-161, 2015.
    [22] R. Moutela, J. D. Carrilho, and M. G. da Silva, "Sensitivity of the PMV Index to the Thermal Comfort Parameters," in Energy for Sustainability 2015 Sustainable Cities: Designing for People and the Planet, pp. 1-4, 2015.
    [23] R. de Dear, G. Brager, and D. Cooper, "Developing an Adaptive Model of Thermal Comfort and Preference," Final Rep. ASHRAE RP-884, Mar. 1997.
    [24] R.-L. Hwang, "Comfort Temperature and Preferred Temperature in Taiwan," in Sustainable Houses and Living in the Hot-Humid Climates of Asia (T. Kubota, H. B. Rijal, and H. Takaguchi, eds.), pp. 155-163, Singapore: Springer, 2018.
    [25] C. I. Bliss, "The Method of Probits," Science, vol. 79, no. 2037, pp. 38-39, Jan. 1934.
    [26] D. J. Finney, Probit Analysis. Cambridge University Press, 2nd ed., Jan. 1952.
    [27] Dobson, An Introduction to Generalized Linear Models, 2nd ed., CRC Press Inc., Boca Raton, FL, USA, 2002.
    [28] E. R. Ballantyne, R. K. Hill, and J. W. Spencer, "Probit analysis of thermal sensation assessments," International Journal of Biometeorology, vol. 21, no. 1, pp. 29-43, 1977.
    [29] F. H. Rohles and R. G. Nevins, "The nature of thermal comfort in sedentary man," in ASHRAE Transactions, vol. 77, pp. 239-246, 1971.
    [30] Thermal Environmental Conditions for Human Occupancy, ANSI/ASHRAE Standard 55, 2017.
    [31] A. Auliciems, "Towards a Psycho-Physiological Model of Thermal Perception," International Journal of Biometeorology, vol. 25, no. 2, pp. 109-122, 1981.
    [32] 中央氣象局,<觀測資料查詢系統V7.2>,網址:https://e-service.cwb.gov.tw/HistoryDataQuery/,上網日期:2022年5月31日。
    [33] X. Deng, G. Kokogiannakis, Z. Ma, and P. Cooper, "Thermal Comfort Evaluation of a Mixed-mode Ventilated Office Building with Advanced Natural Ventilation and Underfloor air Distribution Systems," Energy Procedia, vol. 111, pp. 520-529, Mar. 2017.
    [34] R.-L. Hwang, T.-P. Lin, M.-J. Cheng, and J.-H. Chien, "Patient thermal comfort requirement for hospital environments in Taiwan," Building and Environment, vol. 42, no. 8, pp. 2980-2987, Aug. 2007.
    [35] L. Harrison, "Fundamental Concepts and Definitions Relating to Humidity," in Humidity and Moisture: Measurement and Control in Science and Industry, vol. 3, pp. 3-70, Reinhold Publishing Corporation, 1965.
    [36] R. de Dear and G. Brager, "Developing an Adaptive Model of Thermal Comfort and Preference," in ASHRAE Transactions, vol. 104, pp. 145-167, 1998.
    [37] T. Kurabuchi, T. Endo, K. Kumagai, and H. Yoshino, "Window Opening Behavior and Resultant Thermal and Air Quality Environment in Elementary School Classrooms," in 2nd PALENC Conference and 28th AIVC Conference on Building Low Energy Cooling and Advanced Ventilation Technologies in the 21st century, vol. 1, pp. 587-592, 2007.

    QR CODE