簡易檢索 / 詳目顯示

研究生: 郭禮揚
Li-Yang KUO
論文名稱: 應用雙向長短期記憶模型於分佈式超寬頻模式及具遞迴神經網路之限定時間追蹤控制於全向服務型機器人的特定人士之追隨
Specific Human Following of Omnidirectional Service Robot Using Distributed Ultra-Wideband with Bi-Long-Short Term Memory Model and Recurrent Neural Network Based Finite-Time Tracking Control
指導教授: 黃志良
Chih-Lyang Hwang
口試委員: 施慶隆
Ching-Long Shih
吳常熙
Chang-Hsi Wu
練光祐
Kuang-Yow Lian
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 52
中文關鍵詞: 特定人士之追隨超寬頻無線系統雙向長短期記憶模型遞迴神經網路之限定時間追蹤控制全向服務型機器人Lyapunov穩定性理論
外文關鍵詞: Specific human following, Ultra-wideband system, Bi-long-short term memory model, recurrent neural network finite-time control, Omnidirectional service robot, Lyapunov stability theory
相關次數: 點閱:410下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了在室內環境(例如:辦公室,圖書館,機場,酒店,醫院,倉庫區域)中實現特定人士之追隨,首先採用了使用超寬頻(UWB)系統並依賴其擁有的雙向響應的分散式無線傳感器節點,通過雙向長短期記憶模型(Bi-LSTM)實現無線定位。即作為分佈式UWB實時定位系統(DUWB-RTLS)。由於全向服務機器人(ODSR)的有利功能,設計了基於遞迴神經網絡的有限時間追蹤控制(RNNE-FTTC),以使ODSR透過DUWB-RTLS來追蹤特定人士。為了在有限時間內實現ODSR的零姿態追隨誤差,設計了遞迴神經網絡有限時間參考軌跡(RNN-FTRT),使得基於神經網絡的有限時間跟踪控制(RNN-FTTC)間接追隨由DUWB-RTLS提供的參考姿態。 Lyapunov穩定性理論驗證了所提出的遞迴神經網絡有限時間跟踪控制(RNNE-FTTTC)包括RNN-FTRT和RNN-FTTC的穩定性和性能分析。總結來說,提出的DUWB-RNNE-FTTC包括DUWB-RTLS和RNNE-FTTC。最後,以動態定位,軌跡追蹤,無線導引和特定人員之追隨,驗證所提出的控制方法的可行性、有效性和強健性。


To implement the specific human following in an indoor environment (e.g., office, library, airport, hotel, hospital, inventory region), the distributive wireless sensor nodes using ultra- wideband (UWB) system are first employed to achieve wireless localization through bi-long-short term memory (Bi-LSTM) model owing to its two-way response dependency. It is namely as a distributive UWB real-time localization system (DUWB-RTLS). Due to advantageous feature of omnidirectional service robot (ODSR), the recurrent neural network enhanced finite-time tracking control (RNNE-FTTC) is designed such that the ODSR tracks specific human through the DUWB-RTLS. To achieve the zero pose following error of ODSR in finite time, a recurrent neural network finite-time reference trajectory (RNN-FTRT) is designed such that the neural network based finite-time tracking control (RNN-FTTC) indirectly follows the reference pose provided by DUWB-RTLS. The stability and performance analyses of the proposed RNNE-FTTC including RNN-FTRT and RNN-FTTC are verified by Lyapunov stability theory. In summary, the proposed DUWB-RNNE-FTTC includes DUWB-RTLS and RNNE-FTTC. Finally, the implementations of trajectory tracking, dynamic localization, wireless navigation, and specific human following validate the feasibility, effectiveness, and robustness of the proposed control approach.

目錄 摘要 i Abstract ii 目錄 iii 圖目錄 iv 表目錄 v 第一章 導論與文獻回顧 1 第二章 系統建構與任務陳述 4 2.1系統建構 4 2.2 任務陳述 5 第三章 DUWB-RTLS的全向服務型機器人之導引 7 3.1 無線定位 7 3.2 Bi-LSTM模型 8 3.3 性能分析 9 第四章 使用RNNE-FTTC進行ODSR軌跡追蹤 12 4.1 ODSR術語 12 4.2 ODSR模型 13 4.3 RNNE-FTTC 15 4.3.1 數學預備 15 4.3.2 RNNE-FTTT的設計 17 第五章 結果及分析 23 5.1 軌跡追蹤 23 5.1.1 模擬 23 5.1.2 實驗 27 5.2 動態定位 28 5.3 DUWB-RTLS ODSR特定人士之追隨 30 第六章 結論和未來研究 33 參考文獻 34 附 錄 40

參考文獻
[1] W. Chung, H. Kim, Y. Yoo, C. Moon, and J. Park, “The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder,” IEEE Trans. Ind. Electron., vol.59, no. 8, pp. 3156–3166, Aug. 2012.
[2] L. Li, S. Yan, X. Yu, Y. K. Tan, and H. Li, “Robust multiperson detection and tracking for mobile service and social robots,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 42, no. 5, pp. 1398-1412, Oct. 2012.
[3] R. Tasaki, M. Kitazaki, J. Miura, and K. Terashima, Prototype design of medical round supporting robot Terapio, IEEE ICRA-2015, Seattle, Washington, USA, May 26-30, pp. 829-834, 2015.
[4] H. Lee, H. Kim, and H. J. Kim, “Planning and control for collision-free cooperative aerial transportation,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 1, pp.189- 201, Jan. 2018.
[5] C.-L. Hwang, D.-S. Wang, F.-C. Weng, and S.-L. Lai, “Interactions between specific human and omnidirectional mobile robot using deep learning approach: SSD-FN-KCF,” IEEE Access, vol. 8, pp. pp. 41186-41200, 2020.
[6] Y.-Y. Chen, S.-P. Huang, T.-W. Wu, W.-T. Tsai, C.-Y. Liou, and S.-G. Mao, “UWB system for indoor positioning and tracking with arbitrary target orientation, optimal anchor location, and adaptive NLOS mitigation,” IEEE Trans. Veh. Technol., to be published, 2021.
[7] C.-L. Hwang, F. C. Weng, D. S. Wang, and F. Wu, “Experimental validation of speech improvement based adaptive stratified finite-time saturation control of omnidirectional service robot,” IEEE Trans. Sys., Man, Cybern.: Syst., to be published, 2021.
[8] C.-L. Hwang, C. C. Yang, J. Y. Hung, “Path tracking of an autonomous ground vehicle with different payloads and ground conditions by hierarchical improved fuzzy dynamic sliding- mode control,” IEEE Trans. Fuzzy Syst., vol. 26, no. 2, pp. 899-914, Apr. 2018.
[9] M. Gheisarnejad and H. M. Khooban, “An intelligent non-integer PID controller-based deep reinforcement learning: implementation and experimental results,” IEEE Trans. Ind. Electron., to be published, 2020.
[10] C.-L. Hwang, “Comparison of path tracking control of a car-like mobile robot with and without motor dynamics,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 4, pp. 1801- 1811, Aug. 2016.
[11] J.-X. Xu, Z.-Q. Guo, and T. H. Lee, “Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3671-3681, Jul. 2014.
[12] J. Yuan, F. Sun, and Y. Huang, “Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7665-7675, Dec. 2016.
[13] H. C. Huang, “SoPC-based parallel ACO algorithm and its application to optimal motion controller design for intelligent omnidirectional mobile robots,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1828-1838, Nov. 2013.
[14] J. C. L. Barreto S., A. G. S. Conceic˜ao, C. E. T. D´orea, L. Martinez, and E. R. de Pieri, “Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 2, pp. 467-476, Mar. 2014..
[15] H. Kim and B. K. Kim, “Online minimum-energy trajectory planning and control on a straight-line trajectory for three-wheeled omnidirectional mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4771-4779, Sep. 2104.
[16] D. Rotondo, V. Puig, F. Nejjari, and J. Romera, “A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3932-3944, Jun. 2015.
[17] M. A. A. Mamun, M. T. Nasir, and A. Khayyat, “Embedded system for motion control of an omnidirectional mobile robot,” IEEE Access, vol. 6, pp. 6722-6739, 2018.
[18] T. Terakawa, M. Komori, K. Matsuda, and S. Mikami, “A novel omnidirectional mobile robot with wheels connected by passive sliding joints,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 4, 1716-1727, Jul. 2018.
[19] C. Ren, X. Li , X. Yang, and S. Ma, “Extended state observer-based sliding mode control of an omnidirectional mobile robot with friction compensation,” IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9480-9489, Dec. 2019.
[20] M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn, and A. E. Fathy, “Investigation of high-accuracy indoor 3-D positioning using UWB technology,” IEEE Trans. Microwave Theory and Technology, vol. 56, no. 6, pp. 1316-1326, Jun. 2008
[21] M. Strohmeier, T. Walter, J. Rothe, and S. Montenegro, “Ultra-wideband based pose estimation for small unmanned aerial vehicles,” IEEE Access, vol. 6, pp. 57526-57535, 2018.
[22] H. J. Kim, Y. Xie, H. Yang, C. Lee, and T. L. Song, “An efficient indoor target tracking algorithm using TDOA measurements with applications to ultra-wideband systems,” IEEE Access, vol. 7, pp. 91435-91445, 2019.
[23] P. N. Beuchat, H. Hesse, A. Domahidi, and J. Lygeros, “Enabling optimization-based localization for IoT devices,” IEEE Internet of Things Journal, vol. 6, no. 3, June 2019.
[24] K. Guo, X. Li, and L. Xie, “Ultra-wideband and odometry-based cooperative relative localization with application to multi-UAV formation control,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2590-2603, Jun. 2020.
[25] T. Ge, R. Tharmarasa, B. Lebel, M. Florea, and T. Kirubarajan, “A multidimensional TDOA association algorithm for joint multitarget localization and multisensor synchronization,” IEEE Trans. Aero. Space, Electron. Syst., to be published, 2021.
[26] L. Ren, N. Tran, F. Foroughian, K. Naishadham, J. E. Piou, O. Kilic, and A. E. Fathy, “Short-time state-space method for micro-doppler identification of walking subject using UWB impulse doppler radar,” IEEE Trans. Microwave Theory and Technology, vol. 66, no. 6, pp. 3521-3534, Jul. 2018.
[27] Y. Xu, Y. S. Shmaliy, C. K. Ahn, T. Shen, and Y. Zhuang, “Tightly-coupled integration of INS and UWB using fixed-lag extended UFIR smoothing for quadrotor localization,” IEEE Internet of Things Journal, to be published, 2020.
[28] K. Lu, Y. Xia, C. Yu, and H. Liu, “Finite-time tracking control of rigid spacecraft under actuator saturations and faults,” IEEE Trans. Autom. Sci & Engr., vol. 13, no. 1, pp. 368-381, Jan. 2016.
[29] Y. Wang, L. Gu, Y. Xu, and X. Cao, “Practical tracking control of robot manipulators with continuous fractional -order nonsingular terminal sliding mode,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6194-6204, Oct. 2016.
[30] G.-B. Dai and Y-C Liu, “Distributed coordination and cooperation control for networked mobile manipulators,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 5065-5074, Jun. 2017.
[31] S. Ding, L. Liu, and W. X. Zheng, “Sliding mode direct yaw-moment control design for in-wheel electric vehicles,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6752-6762, Aug. 2017.
[32] G. Sun and Z. Ma, “Practical tracking control of linear motor with adaptive fractional order terminal sliding mode control,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 6, pp. 2643- 2654, Dec. 2017.
[33] S. K. Kommuri, S. B. Lee, and K. C. Veluvolu, “Robust sensors-fault-tolerance with sliding mode estimation and control for PMSM drives,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 1, pp. 17-28, Feb. 2018.
[34] C. Yang, Y. Jiang, W. He, J. Na, Z. Li, and B. Xu, “Adaptive parameter estimation and control design for robot manipulators with finite-time convergence,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8112-8123, Oct. 2018.
[35] S. Jia and J. Shan, “Finite-time trajectory tracking control of space manipulator under actuator saturation,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2086-2096, Mar. 2020.
[36] C.-L. Hwang and Y.-H. Chen, “Fuzzy fixed-time learning control with saturated input, nonlinear switching surface and switching gain to achieve null tracking error,” IEEE Trans. Fuzzy Syst., vol. 28, no. 7, pp. 1464-1476, Jul. 2020.
[37] C.-L. Hwang and B. S. Chen, “Adaptive finite-time saturated tracking control for a class of partially known robots,” IEEE Trans. Syst. Man Cybern.: Syst., to be published, 2021.
[38] C. Taramasco, T. Rodenas, F. Martinez, P. Fuentes, R. Munoz, R. Olivares, V. H. De Albuquerque, and J. Demongeot, “A novel monitoring system for fall detection in older people,” IEEE Access, vol. 6, pp. 43563-43574, 2018.
[39] J. Zhou, Y. Lu, H.-N. Dai, H. Wang, and H. Xiao, “Sentiment analysis of Chinese microblog based on stacked bidirectional LSTM,” IEEE Access, vol. 7, pp. 38856-38866, 2019.
[40] G. Du, Z. Wang, B. Gao, S. Mumtaz, K. M. Abualnaja, and C. Du, “A convolution bidirectional long short-term memory neural network for driver emotion recognition,” IEEE Trans. Intel. Transp. Syst., to be published, 2021.
[41] C. Dhiman, and D. K. Vishwakarma, “View-invariant deep architecture for human action recognition using two-Stream motion and shape temporal dynamics,” IEEE Trans. Image Process., vol. 29, no. , pp. 3835-3844, 2020.
[42] B. Wu, B. Wei, J. Liu, K. Wu, and M. Wang, “Faceted text segmentation via multitask learning,” IEEE Trans. Neural Netw. Learn. Syst., to be published, 2021.
[43] W. Chi, J. Wang, and M. Q.-H. Meng, “A gait recognition method for human following in service robots,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 46, no. 9, pp. 1429-1440, Sep. 2018.
[44] J. Chen and W. J. Kim, “A human-following mobile robot providing natural and universal interfaces for control with wireless electronic devices,” IEEE Trans. Mechatronics, vol. 24, no. 5, pp. 2377-2385, Oct. 2019.
[45] J. Yuan, S. Zhang, Q. Sun, G. Liu, and J. Cai, “Laser-based intersection-aware human following with a mobile robot in indoor environments,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, no. 1, pp. 354-369, Jan. 2021.
[46] “Decawave DW1000 user manual,” Decawave Ltd., Dublin, Ireland, Rep. 2.15, 2017. [Online]. Available: https://decawave.com/wp-content/uploads/2018/09/dw100020user20manual_0.pdf
[47] “APS011 application note: Sources of error in DW1000-based two-way ranging (TWR) schemes,” Decawave Ltd., Dublin, Ireland, Rep. 1.1, 2014.
[48] C.-L. Hwang and C. Jan, “Recurrent-neural-network based multivariable adaptive control for a class of nonlinear dynamic systems with time-varying delay,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 2, pp. 388-401, Apr. 2016.

無法下載圖示 全文公開日期 2026/02/08 (校內網路)
全文公開日期 2026/02/08 (校外網路)
全文公開日期 2026/02/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE