簡易檢索 / 詳目顯示

研究生: 曾允珩
Yun-Heng Tseng
論文名稱: 一個二十位元前景式校正之電阻式數位類比轉換器
A 20-bit Resistive DAC with Foreground Calibration
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 陳信樹
Hsin-Shu Chen
陳伯奇
Poki Chen
陳筱青
Hsiao-Chin Chen
鍾勇輝
Yung-Hui Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 92
中文關鍵詞: 電阻式數位類比轉換器前景式校正位元權重誤差補償
外文關鍵詞: Resistive DAC, Foreground calibration, Bit-weight compensation
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高解析度的數位類比轉換器中大多會使用校正電路改善由製程變異或佈局繞線寄生效應造成的非線性誤差,然而大多數的校正方法需要精確的量測輸出電壓的誤差值。本論文提出一種全新的校正方法來對DAC進行校正,能夠改善需要精確量測出輸出電壓的問題。在本論文中,將二十位元數位類比轉換器拆分成MSB-DAC、ISB-DAC以及LSB-DAC三個部分。MSB-DAC由溫度計編碼控制,能夠確保其單調性並且具有較低的DNL;ISB-DAC以及LSB-DAC皆由二進制控制,能夠大幅降低數位控制線的面積。LSB-DAC的解析度較低,可以不透過校正電路實現高精準度。因此將LSB-DAC用於估測MSB-DAC以及ISB-DAC每個位元的權重誤差,接著透過一個電阻式的校正數位類比轉換器對主電路進行電阻權重誤差補償以實現二十位元的準確度。
    本論文利用TSMC 0.18um 1P6M CMOS製程來實現此DAC。供應電壓為3.3-V,輸出電壓範圍為0. 3 V到3 V。由後模擬結果顯示,受佈局影響,其SFDR為92 dBc。量測結果顯示,在取樣頻率為10 kS/s以及輸入碼為1 kHz的峰對峰弦波時,校正後的SFDR可改善至89 dBc。


    In order to improve the nonlinear effect from PVT variation and routing, many designs have been adopted calibration schemes in high-resolution digital to analog converters (DACs). However, most of the calibration methods require precise output error voltage measurement. A novel calibration scheme is proposed in this thesis to calibrate the errors without precise voltage measurements. The proposed 20-bit DAC is divided into three parts: MSB-DAC, ISB-DAC and LSB-DAC. MSB-DAC is controlled by thermometer-code, which can guarantee monotonicity and low DNL. ISB-DAC and LSB-DAC are controlled by binary code to save layout area. The resolution of LSB-DAC is low, which means that it can achieve high accuracy without calibration. Therefore, the LSB-DAC is used to estimate the bit-weight error in MSB-DAC and ISB-DAC. A resistive calibration DAC is then used to compensate the bit-weight error in the main DAC to achieve 20-bit accuracy.
    The proposed DAC is implemented in TSMC 0.18 um 3.3 V CMOS process, and the output voltage range is from 0.3 V to 3 V. The post-layout simulation results show that the SFDR is 92 dBc, worsen by layout errors. With 1 kHz sinewave input at 10 kS/s, the measurement results show that its SFDR can achieve 89 dBc after calibration.

    目錄 論 文 摘 要 I Abstract II 誌 謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第1章 緒論 1 1-1 研究背景與動機 1 1-2 研究目標與方法 2 1-3 論文架構 2 第2章 數位類比轉換器之基本概念 4 2-1 數位類比轉換器基本原理 4 2-2 數位類比轉換器效能參數 6 2-2-1 DAC靜態參數 6 2-2-2 DAC動態參數 9 2-3 低速高解析之數位類比轉換器架構 11 2-3-1 電阻串聯式DAC(Resistor-String DAC) 11 2-3-2 R-2R電阻串DAC(R-2R Ladder DAC) 12 2-3-3 分段式控制電阻式DAC(Segmentation R-DAC) 13 2-3-4 電容電荷重新分佈式DAC (Charge-Redistribution Switch-Capacitor DAC) 14 2-4 結論 15 第3章 超高解析度數位類比轉換器之設計考量 16 3-1 佈局面積分析 17 3-1-1 分段式DAC架構 (Ⅰ) (6-6-8) 19 3-1-2 分段式DAC (Ⅱ) (6-6-8) 20 3-1-3 分段式DAC架構 (Ⅲ) (6-7-7) 22 3-2 電阻權重誤差校正技術概念 23 3-3 R-DAC校正方法之一 [7] 25 3-4 R-DAC校正方法之二 [2] 27 3-4-1 主DAC的INL估算以及校正 28 3-4-2 電阻本身非線性的校正 29 第4章 數位類比轉換器之晶片實現 31 4-1 分段式數位類比轉換器 33 4-1-1 分段考量 33 4-1-2 雜訊考量 34 4-1-3 製程變異考量 34 4-2 驅動與感測開關 [2] 36 4-2-1 工作原理說明 37 4-2-2 分段與偏移誤差 39 4-2-3 運算放大器設計考量 40 4-2-4 運算放大器輸出電流分析 43 4-3 外部數位校正迴路 49 4-3-1 電阻權重誤差校正技術實現 49 4-3-2 電阻權重誤差校正技術行為分析 51 4-4 外部數位類比轉換器 55 4-5 外部類比數位轉換器 56 4-6 佈局考量 56 4-7 模擬結果 58 第5章 晶片量測結果 65 5-1 量測考量 65 5-2 FPGA校正系統 67 5-2-1 時脈規劃 68 5-2-2 校正模式 69 5-2-3 正常模式 71 5-3 量測結果 71 5-4 結論與未來展望 75 5-4-1 未來設計考量 76 參考文獻 77

    [1] Analog Device, "600 MHz Dual Integrated DCL with PPMU, VHH Drive Capability, Level Setting DACs, and On-Chip Calibration Engine datasheet," Apr. 2011.
    [2] R. C. McLachlan, A. Gillespie, M. C. W. Coln, D. Chisholm, and D. T. Lee, "A 20b Clockless DAC With Sub-ppm INL, 7.5 nV/√Hz Noise and 0.05 ppm/°C Stability," IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3028-3037, 2013.
    [3] C. P. Hurrell, C. Lyden, D. Laing, D. Hummerston, and M. Vickery, "An 18 b 12.5 MS/s ADC With 93 dB SNR," IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2647-2654, 2010.
    [4] A. Bannon, C. P. Hurrell, D. Hummerston, and C. Lyden, "An 18 b 5 MS/s SAR ADC with 100.2 dB dynamic range," in 2014 Symposium on VLSI Circuits Digest of Technical Papers, 10-13 June 2014 2014, pp. 1-2.
    [5] D. Hummerston and P. Hurrell, "An 18-bit 2MS/s pipelined SAR ADC utilizing a sampling distortion cancellation circuit with −107dB THD at 100kHz," in 2017 Symposium on VLSI Circuits, 5-8 June 2017 2017, pp. C280-C281.
    [6] D. Seo, "A Heterogeneous 16-Bit DAC Using a Replica Compensation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1455-1463, 2008.
    [7] K. Parthasarathy, T. Kuyel, Y. Zhongjun, C. Degang, and R. Geiger, "A 16-bit resistor string DAC with full-calibration at final test," in IEEE International Conference on Test, 2005., 8-8 Nov. 2005 2005, pp. 10 pp.-75.
    [8] H. U. Post and K. Schoppe, "A 14-bit monotonic NMOS D/A converter," IEEE Journal of Solid-State Circuits, vol. 18, no. 3, pp. 297-301, 1983.
    [9] J. Williams, J. Brubaker, P. Copley, J. Guerrero, and F. Oprescu, "A standards lab grade 20-bit DAC with 0.1 ppm/C drift," Application Note (Linear Technology Corporation, 2001), 2001.
    [10] A. Sedra, K. Smith, T. C. Carusone, and V. Gaudet, "Microelectronic circuits 8th edition," Chapter, vol. 14, pp. 1235-1236, 2020.
    [11] M. Un-Ku, J. Silva, J. Steensgaard, and G. C. Temes, "A switched-capacitor DAC with analog mismatch correction," in 2000 IEEE International Symposium on Circuits and Systems (ISCAS), 28-31 May 2000 2000, pp. 421-424 vol.4.
    [12] S. Kuboki, K. Kato, N. Miyakawa, and K. Matsubara, "Nonlinearity analysis of resistor string A/D converters," IEEE Transactions on Circuits and Systems, vol. 29, no. 6, pp. 383-390, 1982.
    [13] L. Chi-Hung and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6 mm/sup 2," IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1948-1958, 1998.
    [14] H. J. Schouwenaars, D. W. J. Groeneveld, and H. A. H. Termeer, "A low-power stereo 16-bit CMOS D/A converter for digital audio," IEEE Journal of Solid-State Circuits, vol. 23, no. 6, pp. 1290-1297, 1988.
    [15] D. Marche, Y. Savaria, and Y. Gagnon, "Laser Fine-Tuneable Deep-Submicrometer CMOS 14-bit DAC," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 8, pp. 2157-2165, 2008.
    [16] Y. Li and D. Chen, "A novel 20-bit R-2R DAC structure based on ordered element matching," in 2015 IEEE International Symposium on Circuits and Systems (ISCAS), May. 2015, pp. 1030-1033.
    [17] X. Wang, X. Li, L. Lai, and H. Yang, "A 16b Clockless Digital-to-Analog Converter with Ultra-Low-Cost Poly Resistors Supporting Wide-Temperature Range from -40°C to 85°C," presented at the Proceedings of the 2019 on Great Lakes Symposium on VLSI, Tysons Corner, VA, USA, 2019, pp. 267–270.
    [18] A. J. J., "Digital-to-analog converter with segmented resistor string," US Patent 5,495,245, 1996.
    [19] I. Makoto, "Multi-channel D/A converter utilizing a coarse D/A converter and a fine D/A converter," US Patent 5,801,655, 1998.
    [20] Y. Abdullah, "LSB interpolation circuit and method for segmented digital-to-analog converter," US Patent 6,246,351, 2001.
    [21] K. T. e. al., "Piecewise linear calibration method and circuit to correct transfer function errors of digital to analog converters," Patent 6,642,869, 2003.
    [22] M. P. Kennedy, "On the robustness of R-2R ladder DACs," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 2, pp. 109-116, 2000.
    [23] G. I. Radulov, M. Heydenreich, R. W. v. d. Hofstad, J. A. Hegt, and A. H. M. v. Roermund, "Brownian-Bridge-Based Statistical Analysis of the DAC INL Caused by Current Mismatch," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 2, pp. 146-150, 2007.
    [24] B. Razavi, Design of analog CMOS integrated circuits. McGraw-Hill, 2017.

    無法下載圖示 全文公開日期 2028/08/09 (校內網路)
    全文公開日期 2028/08/09 (校外網路)
    全文公開日期 2028/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE