簡易檢索 / 詳目顯示

研究生: 馬星辰
Rachmawati Hapsari Putri
論文名稱: 應用電漿農業技術探討土壤與水耕中植物生長之現象
Plasma Agriculture Technology on Plant Growth in Soil and Hydroponic Systems
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 江偉宏
Wei-Hung Chiang
廖淑娟
Shu-Chuan Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 117
外文關鍵詞: Plasma Agriculture, Plasma Activated Water, Plasma Direct Seed Treatment
相關次數: 點閱:120下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Recently, agricultural fields have used plasma technology for physical and/or chemical treatment. The two most important processes in the plantation are germination and early growth. There are two types of methods for using plasma to improve the germination and early growth process: plasma direct treatment of the seed and plasma activated water. There are two types of plantation methods in this study: hydroponic and in soil.
Such nutrients are provided to the treated seeds by the direct plasma treatment. By making the gibberellin (GA) hormone present on the seeds, the action of plasma species enhances germination. The results of using APPJ and CDA as the gas sources revealed that each type of seed is treated differently depending on its size and outer layer thickness. After plasma direct treatment, snap beans, kidney beans, garden peas, lettuce, and perilla leaf are displaying the best results.
In agriculture, PAW (plasma-activated water) is gaining popularity. PAW is regarded as a liquid fertilizer because it contains reactive oxygen-nitrogen species (RONS) like H2O2, NO2, and NO3. The RONS produced by plasma in the PAW may be quickly transported into plant cells, where they can function as nutrient sources or as signaling molecules in plant metabolism. Hydroponic systems are growing techniques that use nutrient solutions rather than soil substrates. APGDE and APPJ argon nitrogen as well as CDA are used in this study as the gas sources to create plasma activated water. Hydroponic systems have been used in conjunction with plasma direct treatment and plasma activated water. The most effective results were seen in perilla seeds, which also grew significantly after receiving a plasma treatment. Although lettuce also demonstrated this effect, the leaves are larger.

ACKNOWLEDGEMENT ii ABSTRACT iii CHAPTER I 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Research Objective 2 1.3 Outline of the Thesis 2 CHAPTER II 3 LITERATURE REVIEW 3 2.1 Introduction to Plasma 3 2.1.1 Atmospheric Pressure Plasma (APP) 8 2.1.3 Plasma Seed Treatment 19 CHAPTER III 31 EXPERIMENTAL METHOD 31 3.1 The Seeds Preparation and APP Treatment 31 3.2 The Plasma Activated Water (PAW) 33 3.3 The Planting Set-Up Design 34 3.3.1 Soil Planting Method 34 3.3.2 Hydroponic Method 35 3.4 Sequence of Event for Soil and Hydroponic Method 36 CHAPTER IV 38 RESULTS AND DISCUSSION 38 4.1 Plasma Reactive Species 38 4.2 Plasma Activated Water (PAW) 43 4.3. Germination 60 4.3.1 Garden Pea 61 4.3.2 Kidney Bean 64 4.3.3 Snap Bean 66 4.3.3 Perilla Leaf 69 4.3.4 Mung Bean 73 4.3.4 Asparagus Bean 76 4.3.4 Lettuce 79 4.4 Mechanism of Plasma Activated Water 88 4.5. Mechanism of direct treatment of the seed. 89 4.5 Power Consumption 90 CHAPTER V 91 CONCLUSION AND FUTURE DEVELOPMENT 91 REFERENCE 94

REFERENCE
[1] S. L. Grange, D. I. Leskovar, L. M. Pike, and B. G. Cobb, “Excess moisture and seedcoat nicking influence germination of triploid watermelon,” HortScience, vol. 35, no. 7, pp. 1355–1356, 2000, doi: 10.21273/hortsci.35.7.1355.
[2] C. T. Han, Y. Sung, and M. T. Hsueh, “The Effect of Scarification Treatments and Seed Moisture Content on the Hardseededness of ‘Taitung No.1’ Winged Bean (Psophocarpus tetragonolobus) Seeds,” HortScience, vol. 57, no. 9, pp. 1064–1071, 2022, doi: 10.21273/HORTSCI16683-22.
[3] P. Seeds, “Chapter 2. Obtaining and preparing seeds,” USDA For. Serv. - Gen. Tech. Rep. RMRS-GTR, no. 274, pp. 11–26, 2012.
[4] S. Sharma, R. Naithani, B. Varghese, S. Keshavkant, and S. C. Naithani, “Effect of Hot- Water Treatment on Seed Germination of Some Fast Growing Tropical Tree Species,” vol. 24, no. June 2016, pp. 1–5, 2008.
[5] J. B. Odoi, D. Mugeni, R. Kiiza, B. Apolot, and S. Gwali, “Effect of Soaking Treatment on Germination of Hard Coated Tropical Forest Tree Seeds,” Uganda J. Agric. Sci., vol. 19, no. 2, pp. 1–9, 2021, doi: 10.4314/ujas.v19i2.1.
[6] W. Lin, M. Lin, H. Zhou, H. Wu, Z. Li, and W. Lin, “The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards,” PLoS One, vol. 14, no. 5, pp. 1–16, 2019, doi: 10.1371/journal.pone.0217018.
[7] R. S. Velazquez-Gonzalez, A. L. Garcia-Garcia, E. Ventura-Zapata, J. D. O. Barceinas-Sanchez, and J. C. Sosa-Savedra, “A Review on Hydroponics and the Technologies Associated for Medium-and Small-Scale Operations,” Agric., vol. 12, no. 5, pp. 1–21, 2022, doi: 10.3390/agriculture12050646.
[8] B. R. Adhikari and R. Khanal, “Introduction to the Plasma State of Matter,” Himal. Phys., vol. 4, no. 1, pp. 60–64, 2013, doi: 10.3126/hj.v4i0.9430.
[9] A. Grill, Cold Plasma Materials Fabrication: From Fundamentals to Applications.Wiley-IEEE Press, 1994. doi: 10.1109/9780470544273.
[10] J. E. Harry, Introduction to Plasma Technology: Science, Engineering and Applications.John Wiley & Sons, 2010. doi: 10.1002/9783527632169.
[11] K. C. S.D. Kencana, W. Chuang, C. Changraini, E. Schellkes, Y.-L. Kuo, “Achieving selective cleaning on semiconductors packaging using atmospheric pressure plasma,” 2020, doi: 10.1109/ECTC32862.2020.00205.
[12] C. L. Ko, Y. L. Kuo, W. J. Lee, H. J. Sheng, and J. Y. Guo, “The enhanced abrasion resistance of an anti-fingerprint coating on chrome-plated brass substrate by integrating sputtering and atmospheric pressure plasma jet technologies,” Appl. Surf. Sci., vol. 448, pp. 88–94, 2018, doi: 10.1016/j.apsusc.2018.04.075.
[13] Y. L. Kuo, K. H. Chang, T. S. Hung, K. S. Chen, and N. Inagaki, “Atmospheric-pressure plasma treatment on polystyrene for the photo-induced grafting polymerization of N- isopropylacrylamide,” Thin Solid Films, vol. 518, no. 24, pp. 7568–7573, Oct. 2010, doi: 10.1016/j.tsf.2010.05.047.
[14] Y.-L. Kuo, S. D. Kencana, and Y.-M. Su, “Oxygen vacancy levels on gadolinia-doped ceria interlayer deposited by atmospheric pressure plasma jet for solid oxide fuel cells,” Ceram. Int., vol. 44, no. 13, pp. 15262–15268, Sep. 2018, doi: 10.1016/j.ceramint.2018.05.169.
[15] Y.-L. Kuo, S. D. Kencana, Y.-M. Su, and H.-T. Huang, “Tailoring the O2 reduction activity on hydrangea-like La0.5Sr0.5MnO3 cathode film fabricated via atmospheric pressure plasma jet process,” Ceram. Int., vol. 44, no. 7, pp. 7349–7356, May 2018, doi: 10.1016/j.ceramint.2018.02.068.
[16] J. Binenbaum, R. Weinstain, and E. Shani, “Gibberellin Localization and Transport in Plants,” Trends Plant Sci., vol. 23, no. 5, pp. 410–421, May 2018, doi: 10.1016/j.tplants.2018.02.005.
[17] Z. Li et al., “Reactive Oxygen Species and Gibberellin Acid Mutual Induction to Regulate Tobacco Seed Germination,” Front. Plant Sci., vol. 9, Oct. 2018, doi: 10.3389/fpls.2018.01279.
[18] L. A. Del Río, “ROS and RNS in plant physiology: An overview,” J. Exp. Bot., vol. 66, no. 10, pp. 2827–2837, May 2015, doi: 10.1093/jxb/erv099.
[19] H. Conrads and M. Schmidt, “Plasma generation and plasma sources,” Plasma Sources Sci. Technol., vol. 9, no. 4, pp. 441–454, Nov. 2000, doi: 10.1088/0963-0252/9/4/301.
[20] S. Roy, B. Choudhury, J. Johnson, and A. Schindler-Tyka, “Application of dielectric barrier discharge for improving food shelf life and reducing spoilage,” Sci. Rep., vol. 11, no. 1, p. 19200, Sep. 2021, doi: 10.1038/s41598-021-96887-3.
[21] H. Conrads and M. Schmidt, “Plasma generation and plasma sources,” Plasma Sources Sci. Technol., vol. 9, no. 4, pp. 441–454, 2000, doi: 10.1088/0963-0252/9/4/301.
[22] A. G. Volkov, A. Bookal, J. S. Hairston, J. Roberts, G. Taengwa, and D. Patel, “Mechanisms of multielectron reactions at the plasma/water interface: Interfacial catalysis, RONS, nitrogen fixation, and plasma activated water,” Electrochim. Acta, vol. 385, p. 138441, 2021, doi: 10.1016/j.electacta.2021.138441.
[23] A. V. Nastuta and T. Gerling, “Cold Atmospheric Pressure Plasma Jet Operated in Ar and He: From Basic Plasma Properties to Vacuum Ultraviolet, Electric Field and Safety Thresholds Measurements in Plasma Medicine,” Appl. Sci., vol. 12, no. 2, p. 644, Jan. 2022, doi: 10.3390/app12020644.
[24] V. Stoleru et al., “Plant growth promotion effect o[1] V. Stoleru et al., ‘Plant growth promotion effect of plasma activated water on Lactuca sativa L. cultivated in two different volumes of substrate,’ Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020, doi: 10.1038/s41598-020- 77355,” Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020, doi: 10.1038/s41598-020-77355-w.
[25] L. Fan, X. Liu, Y. Ma, and Q. Xiang, “Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts,” J. Taibah Univ. Sci., vol. 14, no. 1, pp. 823–830, 2020, doi: 10.1080/16583655.2020.1778326.
[26] 杜正恭 ; 賴元泰, “阻止氮肥破壞生態的救星?大氣電漿技術|杜正恭教授 國立清華大學材料科學工程學系,” 2023. https://www.matek.com/zh- TW/Tech_Article/detail/latest/all/202304- IAR?fbclid=IwAR06iv811o4jevm0HekAmughe2Yo4neECb4bjVDDUp3W6VPuz63UaK ZxFxs
[27] T.-C. Wang, S.-Y. Hsu, Y.-T. Lai, and J.-G. Duh, “Improving the Growth Rate of Lettuce Sativa Young Plants via Plasma-Activated Water Generated by Multitubular Dielectric Barrier Discharge Cold Plasma System,” IEEE Trans. Plasma Sci., vol. 50, no. 7, pp. 2104–2109, Jul. 2022, doi: 10.1109/TPS.2022.3179734.
[28] B. Machado-Moreira, B. K. Tiwari, K. G. Richards, F. Abram, and C. M. Burgess, “Application of plasma activated water for decontamination of alfalfa and mung bean seeds,” Food Microbiol., vol. 96, no. December 2020, p. 103708, 2021, doi: 10.1016/j.fm.2020.103708.
[29] S. Mošovská et al., “Decontamination of Escherichia coli on the surface of soybean seeds using plasma activated water,” Lwt, vol. 154, 2022, doi: 10.1016/j.lwt.2021.112720.
[30] C. Alves, F. L. G. De Menezes, J. O. De Vitoriano, and D. L. S. Da Silva, “Effect of plasma-activated water on soaking, germination, and vigor of Erythrina Velutina seeds,” Plasma Med., vol. 9, no. 2, pp. 111–120, 2019, doi: 10.1615/PlasmaMed.2019031667.
[31] P. Škarpa, D. Klofáč, F. Krčma, J. Šimečková, and Z. Kozáková, “Effect of Plasma Activated Water Foliar Application on Selected Growth Parameters of Maize (Zea mays L.),” Water, vol. 12, no. 12, p. 3545, Dec. 2020, doi: 10.3390/w12123545.
[32] R. P. Guragain et al., “Impact of Plasma-Activated Water (PAW) on Seed Germination of Soybean,” J. Chem., vol. 2021, 2021, doi: 10.1155/2021/7517052.
[33] J. Jirešová, V. Scholtz, J. Julák, and B. Šerá, “Comparison of the Effect of Plasma‐ Activated Water and Artificially Prepared Plasma‐Activated Water on Wheat Grain Properties,” Plants, vol. 11, no. 11, 2022, doi: 10.3390/plants11111471.

[34] G. Grainge et al., “Molecular mechanisms of seed dormancy release by gas plasma- activated water technology,” J. Exp. Bot., vol. 73, no. 12, pp. 4065–4078, 2022, doi: 10.1093/jxb/erac150.
[35] R. Abbaszadeh, P. K. Nia, M. Fattahi, and H. G. Marzdashti, “The effects of three plasma- activated water generation systems on lettuce seed germination,” Res. Agric. Eng., vol. 67, no. 3, pp. 131–137, 2021, doi: 10.17221/105/2020-RAE.
[36] R. A. Priatama, A. N. Pervitasari, S. Park, S. J. Park, and Y. K. Lee, “Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth,” Int. J. Mol. Sci., vol. 23, no. 9, 2022, doi: 10.3390/ijms23094609.
[37] D. Yan et al., “Improving Seed Germination by Cold Atmospheric Plasma,” Plasma, vol.5, no. 1, pp. 98–110, 2022, doi: 10.3390/plasma5010008.
[38] T. Boutraa, S. A. Fadhlalmawla, J. Q. M. Almarashi, and A. A. H. Mohamed, “Argon Cold Atmospheric Pressure Plasma Jet Enhancing Seed Germination of Fenugreek (Trigonella Foenum-Graecum),” IEEE Int. Pulsed Power Conf., vol. 2019-June, pp. 1–5, 2019, doi: 10.1109/PPPS34859.2019.9009694.
[39] J. J. Zhang et al., “Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes,” Sci. Rep., vol. 7, no. February, pp. 1–12, 2017, doi: 10.1038/srep41917.
[40] B. Šerá, P. Špatenka, M. Šerý, N. Vrchotová, and I. Hrušková, “Influence of plasma treatment on wheat and oat germination and early growth,” IEEE Trans. Plasma Sci., vol. 38, no. 10 PART 2, pp. 2963–2968, 2010, doi: 10.1109/TPS.2010.2060728.
[41] K. Lotfy, “Effects of Cold Atmospheric Plasma Jet Treatment on the Seed Germination and Enhancement Growth of Watermelon,” Open J. Appl. Sci., vol. 07, no. 12, pp. 705– 719, 2017, doi: 10.4236/ojapps.2017.712050.
[42] Z. Zhou, Y. Huang, S. Yang, and W. Chen, “Introduction of a new atmospheric pressure plasma device and application on tomato seeds,” Agric. Sci., vol. 02, no. 01, pp. 23–27, 2011, doi: 10.4236/as.2011.21004.
[43] R. Singh, P. Prasad, R. Mohan, M. K. Verma, and B. Kumar, “Radiofrequency cold plasma treatment enhances seed germination and seedling growth in variety CIM-Saumya of sweet basil (Ocimum basilicum L.),” J. Appl. Res. Med. Aromat. Plants, vol. 12, no. July 2018, pp. 78–81, 2019, doi: 10.1016/j.jarmap.2018.11.005.
[44] M. Thisawech, O. Saritnum, S. Sarapirom, K. Prakrajang, and W. Phakham, “Effects of plasma technique and gamma irradiation on seed germination and seedling growth of chili pepper,” Chiang Mai J. Sci., vol. 47, no. 1, pp. 73–82, 2020.
[45] A. Gómez-Ramírez et al., “Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation,” Sci. Rep., vol. 7, no. 1, pp. 1–12, 2017, doi: 10.1038/s41598-017-06164-5.
[46] N. Khamsen et al., “Rice (Oryza sativa L.) Seed Sterilization and Germination Enhancement via Atmospheric Hybrid Nonthermal Discharge Plasma,” ACS Appl. Mater. Interfaces, vol. 8, no. 30, pp. 19268–19275, 2016, doi: 10.1021/acsami.6b04555.
[47] S. Iqbal, U. Riaz, G. Murtaza, and M. Jamil, “Microbiota and Biofertilizers,” Microbiota and Biofertilizers, no. December, 2021, doi: 10.1007/978-3-030-48771-3.
[48] C. Xin, Y. Qing-wei, S. Jia-lin, X. Shuang, X. Fu-chun, and C. Ya-jun, “Research Progress on Nitrogen Use and Plant Growth,” J. Northeast Agric. Univ. (English Ed., vol. 21, no. 2, pp. 68–74, 2014, doi: 10.1016/s1006-8104(14)60036-2.
[49] K. Prajapati and H. A. Modi, “the Importance of Potassium in Plant Growth – a Review,” Indian J. Plant Sci. Jul.-Sept. Oct.-Dec, vol. 1, no. June, pp. 177–186, 2012, [Online]. Available: https://www.researchgate.net/publication/304246278_THE_IMPORTANCE_OF_POTAS SIUM_IN_PLANT_GROWTH_-_A_REVIEW
[50] M. Ibrahim, M. Iqbal, Y. T. Tang, S. Khan, D. X. Guan, and G. Li, “Phosphorus Mobilization in Plant–Soil Environments and Inspired Strategies for Managing Phosphorus: A Review,” Agronomy, vol. 12, no. 10, pp. 1–17, 2022, doi: 10.3390/agronomy12102539.
[51] IPNI (International Plant Nutrition Institute), “Functions of Phosphorus in Plants,” Better Crop., vol. 83, no. 1, pp. 6–7, 1999.
[52] T. Balemi and K. Negisho, “Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: A review,” J. Soil Sci. Plant Nutr., vol. 12, no. 3, pp. 547–561, 2012, doi: 10.4067/s0718-95162012005000015.
[53] H. Upadhyay et al., “Exploration of Crucial Factors Involved in Plants Development Using the Fuzzy AHP Method,” Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/4279694.
[54] J. Ferrell, T.-C. Tsai, S. Kalghatgi, J. S. Louis, and R. L. Gray, “Plasma Activated Water for an enhanced soil-free horticulture,” WO 2017/049263 Al. 2017.
[55] D. Guo, H. Liu, L. Zhou, J. Xie, and C. He, “Plasma-activated water production and its application in agriculture,” J. Sci. Food Agric., vol. 101, no. 12, pp. 4891–4899, 2021, doi: 10.1002/jsfa.11258.
[56] F. Rezaei et al., “Investigation of plasma-induced chemistry in organic solutions for enhanced electrospun PLA nanofibers,” Plasma Process. Polym., vol. 15, no. 6, p. 1700226, Jun. 2018, doi: 10.1002/ppap.201700226.
[57] Y. H. Kim et al., “Measurement of Reactive Hydroxyl Radical Species Inside the Biosolutions During Non-thermal Atmospheric Pressure Plasma Jet Bombardment onto the Solution,” Plasma Chem. Plasma Process., vol. 34, no. 3, pp. 457–472, May 2014, doi: 10.1007/s11090-014-9538-0.
[58] K. Fricke et al., “Atmospheric Pressure Plasma: A High-Performance Tool for the Efficient Removal of Biofilms,” PLoS One, vol. 7, no. 8, p. e42539, Aug. 2012, doi: 10.1371/journal.pone.0042539.
[59] N. C. ROY, M. R. TALUKDER, and A. N. CHOWDHURY, “OH and O radicals production in atmospheric pressure air/Ar/H 2 O gliding arc discharge plasma jet,” Plasma Sci. Technol., vol. 19, no. 12, p. 125402, Dec. 2017, doi: 10.1088/2058- 6272/aa86a7.
[60] B. Adhikari, M. Adhikari, B. Ghimire, G. Park, and E. H. Choi, “Cold Atmospheric Plasma-Activated Water Irrigation Induces Defense Hormone and Gene expression in Tomato seedlings,” Sci. Rep., vol. 9, no. 1, p. 16080, Nov. 2019, doi: 10.1038/s41598- 019-52646-z.
[61] N. Bolouki, W. H. Kuan, Y. Y. Huang, and J. H. Hsieh, “Characterizations of a plasma-water system generated by repetitive microsecond pulsed discharge with air, nitrogen, oxygen, and argon gases species,” Appl. Sci., vol. 11, no. 13, 2021, doi: 10.3390/app11136158.
[62] M. Y. Naz, S. Shukrullah, S. U. Rehman, Y. Khan, A. A. Al-Arainy, and R. Meer, “Optical characterization of non-thermal plasma jet energy carriers for effective catalytic processing of industrial wastewaters,” Sci. Rep., vol. 11, no. 1, p. 2896, Feb. 2021, doi: 10.1038/s41598-021-82019-4.
[63] J. Aveyard et al., “Linker-free covalent immobilization of nisin using atmospheric pressure plasma induced grafting,” J. Mater. Chem. B, vol. 5, no. 13, pp. 2500–2510, 2017, doi: 10.1039/C7TB00113D.
[64] H. Puliyalil, G. Filipič, J. Kovač, M. Mozetič, S. Thomas, and U. Cvelbar, “Tackling chemical etching and its mechanisms of polyphenolic composites in various reactive low temperature plasmas,” RSC Adv., vol. 6, no. 97, pp. 95120–95128, 2016, doi: 10.1039/C6RA15923K.
[65] J. Liang, X. Zhou, Z. Zhao, W. Wang, D. Yang, and H. Yuan, “Reactive oxygen and nitrogen species in Ar + N2 + O2 atmospheric-pressure nanosecond pulsed plasmas in contact with liquid,” Phys. Plasmas, vol. 26, no. 2, Feb. 2019, doi: 10.1063/1.5063707.
[66] S. Deng, C. Cheng, G. Ni, Y. Meng, and H. Chen, “Bacillus subtilis devitalization mechanism of atmosphere pressure plasma jet,” Curr. Appl. Phys., vol. 10, no. 4, pp. 1164–1168, Jul. 2010, doi: 10.1016/j.cap.2010.02.004.
[67] P. J. Cullen and V. Milosavljević, “Spectroscopic characterization of a radio-frequency argon plasma jet discharge in ambient air,” Prog. Theor. Exp. Phys., vol. 2015, no. 6, pp. 1–17, 2015, doi: 10.1093/ptep/ptv070.
[68] R. S. Brayfield, A. Jassem, M. Lauria, A. Fairbanks, A. L. Garner, and K. M. Keener, “Optical emission spectroscopy of high voltage, cold atmospheric pressure plasmas,” in 2016 IEEE International Conference on Plasma Science (ICOPS), Jun. 2016, pp. 1–1. doi: 10.1109/PLASMA.2016.7534174.
[69] S. Jaiswal, E. M. Aguirre, and G. V. Prakash, “A KHz frequency cold atmospheric pressure argon plasma jet for the emission of O(1S) auroral lines in ambient air,” Sci. Rep., vol. 11, no. 1, pp. 1–11, 2021, doi: 10.1038/s41598-021-81488-x.
[70] N. N. Misra, K. M. Keener, P. Bourke, and P. J. Cullen, “Generation of In-Package Cold Plasma and Efficacy Assessment Using Methylene Blue,” Plasma Chem. Plasma Process., vol. 35, no. 6, pp. 1043–1056, Nov. 2015, doi: 10.1007/s11090-015-9638-5.
[71] X.-J. Huang, Y. Xin, L. Yang, Q.-H. Yuan, and Z.-Y. Ning, “Spectroscopic study on rotational and vibrational temperature of N2 and N2+ in dual-frequency capacitively coupled plasma,” Phys. Plasmas, vol. 15, no. 11, Nov. 2008, doi: 10.1063/1.3025826.
[72] S. S. M. S. SHAH, R. AHMAD, U. IKHLAQ, “Characterization of Pulsed DC Nitrogen Plasma Using Optical Emission And Langmuir Probe,” J. Nat. Sci. Mathmatics, vol. 53, no. 2013, pp. 1–12, 2014.
[73] Masruroh and D. J.D.H. Santjojo, “Surface Modification of Polystyrene by Nitrogen Plasma Treatment,” in Coatings and Thin-Film Technologies, IntechOpen, 2019. doi: 10.5772/intechopen.79716.
[74] K. Kim, C. Chokradjaroen, and N. Saito, “Solution plasma: new synthesis method of N-doped carbon dots as ultra-sensitive fluorescence detector for 2,4,6-trinitrophenol,” Nano Express, vol. 1, no. 2, p. 020043, Sep. 2020, doi: 10.1088/2632-959X/abb9fa.
[75] V. Rathore and S. K. Nema, “The role of different plasma forming gases on chemical species formed in plasma activated water (PAW) and their effect on its properties,” Phys. Scr., vol. 97, no. 6, p. 065003, Jun. 2022, doi: 10.1088/1402-4896/ac6d1b.
[76] K. Mizoi et al., “Interactions between pH, reactive species, and cells in plasma-activated water can remove algae,” RSC Adv., vol. 12, no. 13, pp. 7626–7634, 2022, doi: 10.1039/D1RA07774K.
[77] F. Judée, S. Simon, C. Bailly, and T. Dufour, “Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms,” Water Res., vol. 133, pp. 47–59, 2018, doi: 10.1016/j.watres.2017.12.035.
[78] A. Waskow, A. Howling, and I. Furno, “Mechanisms of Plasma-Seed Treatments as a Potential Seed Processing Technology,” Front. Phys., vol. 9, Apr. 2021, doi: 10.3389/fphy.2021.617345.

QR CODE