簡易檢索 / 詳目顯示

研究生: 江昱輝
Yu-Hui Chiang
論文名稱: Co2CrFeNi與Al0.4Co2CrFeNi高熵合金之相變化研究
The study of phase transformations in Co2CrFeNi and Al0.4Co2CrFeNi high entropy alloys
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 108
中文關鍵詞: 高熵合金Spinodal相分離有序化相變化L12相B2相M23C6碳化物
外文關鍵詞: high entropy alloys, spinodal decomposition, ordering reaction, L12, B2, M23C6
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

高熵合金(High Entropy Alloys, HEAs)是由四種或是四種以上元素所組成的合金,並且各元素原子百分比介於5%到35%。高熵合金經由適當的熱處理,可獲得極佳的材料性質,例如:耐高溫氧化、高強度與抗腐蝕等。本論文探討由真空感應熔煉的Co2CrFeNi (合金A)和Al0.4Co2CrFeNi (合金B)的兩種高熵合金,觀察從1050℃固溶處理與恆溫處理後的相變化以及其微觀結構改變,發現Al0.4Co2CrFeNi經由熱處理後析出B2相和L12所發生之spinodal相分離與有序化反應。高熵合金A經1050℃固溶處理後之相結構由單相的沃斯田體(γ)所組成,此組成相於長時間的恆溫處理後,並無發現明顯析出物。而高熵合金B經固溶處理後之相結構為單相的單相的沃斯田體(γ)所組成,而經過恆溫處理後,發現B2相,另於較低溫之恆溫處理時發現L12相以及M23C6碳化物。其中沃斯田體相的相變化形式如下:高溫沃斯田體於冷卻過程中分解為二個低溫沃斯田體(γ′+ γ″),其中含高溶質的γ″相於更低溫時,經由有序化反應而相轉變為L12相。其總反應式為:γ → γ′ + γ″ → γ′ + L12。


High-entropy alloys (HEAs) are defined as those alloys containing at least four principal elements, each having an atomic percentage between 5% and 35%. With the proper heat treatments, those HEAs can possess some excellent material properties, for example, oxidation resistance, high strength, high corrosion resistance, etc; however, certain knowledge of phase transformations is required during the alloy-making processes. Phase transformations of both Alloy A (Co2CrFeNi) and Alloy B (Al0.4Co2CrFeNi) HEAs have been studied throughout this study. The results show that the Alloy A exhibits a single Face-centered Cubic (FCC) phase after solution treatment for an hour and annealing treatments for 100 hours. On the other hand, alloy B transformed to dual-phase of major austenite and minor B2 phase after annealing treatments for 100 hours at certain temperatures ranging from 650℃ to 950℃. The outcome of our study shows that spinodal decompositions occurred in the HEAs after heating at and cooling from 1323 K, the high-temperature austenite (γ) decomposed through the spinodal decomposition into low-temperature solute-lean austenite (γ′) and solute-enriched austenite (γ″). The solute-enriched austenite phase also transformed into the L12 phase via the ordering reaction upon cooling to lower temperatures. The occurrence of spinodal decomposition and ordering reaction in the austenite phase of the HEA can be written as following, γ → γ′ + γ″ →γ′ + L12.

摘 要…..……………………………………………………………….. I Abstract……………. II 目 錄…. III 目 錄…. IV 第一章 緒 論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 過渡金屬元素以及其他元素的影響 4 2.1.1 面心立方結構之元素 5 2.1.2 體心立方結構之元素 6 2.1.3 不分類結構之元素 6 2.2 高熵合金的相變化 6 2.3 擴散型相變化 7 2.3.1 析出型相變化 8 2.3.2 Spinodal相分離 8 2.3.3 有序化相變化 10 2.3.4 B2相析出 10 2.3.5 L12相析出 11 2.3.6 M23C6碳化物析出 12 2.4 高熵合金相組成預測 12 2.5 固溶度準則 12 第三章 實驗方法 23 3.1 高熵合金熔鑄 23 3.2 鑄錠加工 24 3.3 合金熱處理 25 3.3.1 固溶處理 25 3.3.2 恆溫處理 26 3.4 分析儀器與方法 26 3.4.1 光學顯微鏡 26 3.4.2 X光繞射儀 28 3.4.3 場發射掃描式電子顯微鏡 29 3.4.4 穿透式電子顯微鏡 31 第四章 結果與討論 40 4.1 合金A相變化研究 40 4.1.1 合金A之固溶處理 40 4.1.2 合金A之恆溫熱處理 41 4.2  合金B相變化研究 42 4.2.1 合金B之固溶處理 42 4.2.2 恆溫熱處理 43 4.2.3 L12相的spinodal相分離與有序化反應 43 4.2.4 B2相的析出 45 4.2.5 M23C6碳化物析出 47 第五章 結 論 84 參考文獻…………………………………………………………...….. 86

1. Murty, B. S., Yeh, J. W., Ranganathan, S., & Bhattacharjee, P. P., High-entropy alloys, Elsevier (2019).
2. Porter, D. A., Easterling, K. E., & Sherif, M. Y., Phase transformations in metals and alloys, Boca Raton: CRC Press (2018).
3. Liu, W., Tu, H., Gao, M., Su, X., Zhang, S., Huo, C., & Yang, H., High performance DLC/BP and ZnS/YbF3 double-layer protective and antireflective coatings, Journal of alloys and compounds, 581 (2013) 526-529.
4. Yeh, J. W., Chang, S. Y., Hong, Y. D., Chen, S. K., & Lin, S. J., Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Materials chemistry and physics, 103(1) (2007) 41-46.
5. Wang, F. J., & Zhang, Y., Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy, Materials Science and Engineering: A, 496(1-2) (2008) 214-216.
6. Juan, C. C., Hsu, C. Y., Tsai, C. W., Wang, W. R., Sheu, T. S., Yeh, J. W., & Chen, S. K., On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys, Intermetallics, 32 (2013) 401-407.
7. Poletti, M. G., Branz, S., Fiore, G., Szost, B. A., Crichton, W. A., & Battezzati, L., Equilibrium high entropy phases in X-NbTaTiZr (X= Al, V, Cr and Sn) multiprincipal component alloys, Journal of Alloys and Compounds, 655 (2016) 138-146.
8. Nadutov, V.M., Makarenko, S.Y. & Volosevich, P.Y., Effect of aluminum on fine structure and distribution of chemical elements in high-entropy alloys AlxFeNiCoCuCr, Phys. Metals Metallogr, 116 (2015) 439–444.
9. Kao, Y. F., Chen, T. J., Chen, S. K., & Yeh, J. W., Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Journal of Alloys and Compounds, 488(1) (2009) 57-64.
10. Wang, W. R., Wang, W. L., & Yeh, J. W., Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures, Journal of Alloys and Compounds, 589 (2014) 143-152.
11. Tasi, M. H., & Yeh, J. W., High-entropy alloys: Acritical review, Mater. Res. Lett, 2 (3) (2014) 107-123.
12. Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials, 6 (5) (2004) 299-303.
13. Ye, Y. F., Wang, Q., Lu, J., Liu, C. T., & Yang, Y., High-entropy alloy: challenges and prospects, Materials Today, 19(6) (2016) 349-362.
14. Lee, K. S., Bae, B., Kang, J. H., Lim, K. R., & Na, Y. S., Multi-phase refining of an AlCoCrFeNi high entropy alloy by hot compression, Materials Letters, 198 (2017) 81-84.
15. Zhang, C., Zhang, F., Diao, H., Gao, M. C., Tang, Z., Poplawsky, J. D., & Liaw, P. K., Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Materials & Design, 109 (2016) 425-433.
16. Tang, Z., Senkov, O. N., Parish, C. M., Zhang, C., Zhang, F., Santodonato, L. J., & Liaw, P. K., Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization, Materials Science and Engineering: A, 647 (2015) 229-240.
17. Butler, T. M., & Weaver, M. L., Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys, Journal of Alloys and Compounds, 674 (2016) 229-244.
18. Cahn, J. W., On spinodal decomposition in cubic crystals, Acta metallurgica, 10(3) (1962) 179-183.
19. Laughlin, D. E., & Cahn, J. W., Spinodal decomposition in age hardening copper-titanium alloys, Acta Metallurgica, 23(3) (1975) 329-339.
20. Soffa, W. A., & Laughlin, D. E., High-strength age hardening copper–titanium alloys: redivivus, Progress in Materials Science, 49(3-4) (2004) 347-366.
21. Soffa, W. A., & Laughlin, D. E., Decomposition and ordering processes involving thermodynamically first-order order→ disorder transformations, Acta Metallurgica, 37(11) (1989) 3019-3028.
22. Oshima, R., & Wayman, C. M., Fine structure in quenched Fe-Al-C steels, Metallurgical Transactions, 3(8) (1972) 2163-2169.
23. Han, K. H., Yoon, J. C., & Choo, W. K., TEM evidence of modulated structure in Fe-Mn-Al-C austenitic alloys, Scripta metallurgica, 20(1) (1986) 33-36.
24. Sato, K., Tagawa, K., & Inoue, Y., Spinodal decomposition and mechanical properties of an austenitic Fe-30wt.% Mn-9wt.% Al-0.9 wt.% C alloy, Materials Science and Engineering: A, 111 (1989) 45-50.
25. Luo, K. T., Kao, P. W., & Gan, D., Low temperature mechanical properties of Fe-28-Mn-5Al-1C alloy, Materials Science and Engineering: A, 151(1) (1992) L15-L18.
26. Sato, K., Tagawa, K., & Inoue, Y., Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys, Metallurgical Transactions A, 21(1) (1990) 5-11.
27. Han, K. H., On the coarsening of the modulated structure during aging of austenitic Fe-Mn-Al-C alloys prepared by the rapid solidification process, Materials Science and Engineering: A, 197(2) (1995) 223-229.
28. Choo, W. K., Kim, J. H., & Yoon, J. C., Microstructural change in austenitic Fe-30.0 wt% Mn-7.8 wt% Al-1.3 wt% C initiated by spinodal decomposition and its influence on mechanical properties, Acta Materialia, 45(12) (1997) 4877-4885.
29. Li, M. C., Chang, H., Kao, P. W., & Gan, D., The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys, Materials chemistry and physics, 59(1) (1999) 96-99.
30. Wang, C. S., Hwang, C. N., Chao, C. G., & Liu, T. F., Phase transitions in an Fe–9Al–30Mn–2.0 C alloy, Scripta Materialia, 57(9) (2007) 809-812.
31. Warlimont, H. (Ed.)., Order-disorder transformations in alloys: proceedings of the international symposium on order-disorder transformations in alloys held 3–6 September 1973 in Tübingen, Germany (Vol. 24), Springer Science & Business Media (2013).
32. Liu, T. F., & Wan, C. M., DO3 structure in an Fe-Al-Mn-Cr alloy, Scripta metallurgica, 19(7) (1985) 805-810.
33. Wang, C. S., Hwang, C. N., Chao, C. G., & Liu, T. F., Phase transitions in an Fe–9Al–30Mn–2.0 C alloy, Scripta Materialia, 57(9) (2007) 809-812.
34. C.J. Sung, W.C. Cheng, A study of spinodal decomposition and ordering reaction in Al0.5CoCrFeNi2 high entropy alloys, M.S. Thesis, National Taiwan University of Science and Technology (2018).
35. Bhattacharjee, T., Wani, I. S., Sheikh, S., Clark, I. T., Okawa, T., Guo, S., & Tsuji, N., Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1eutectic high entropy alloy by cryo-rolling and annealing, Scientific reports, 8(1) (2018) 1-8.
36. Wani, I. S., Bhattacharjee, T., Sheikh, S., Bhattacharjee, P. P., Guo, S., & Tsuji, N., Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing, Materials Science and Engineering: A, 675(2016) 99-109.
37. Wani, I. S., Bhattacharjee, T., Sheikh, S., Bhattacharjee, P. P., Guo, S., & Tsuji, N., Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing, Materials Science and Engineering: A, 675(2016) 99-109.
38. Huang, K. H., & Yeh, J. W., A study on the multicomponent alloy systems containing equal-mole elements, Hsinchu: National Tsing Hua University (1996) 1-93.
39. Tsai, M. H., & Yeh, J. W., High-entropy alloys: a critical review, Materials Research Letters, 2(3) (2014) 107-123.
40. Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., & Chang, S. Y., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials, 6(5) (2004) 299-303.
41. Sheng, G. U. O., & Liu, C. T., Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase, Progress in Natural Science: Materials International, 21(6) (2011) 433-446.
42. Guo, S., Ng, C., Lu, J., & Liu, C. T., Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, Journal of applied physics, 109(10) (2011) 103505.
43. Tanner, L. E., & Leamy, H. J., The microstructure of order-disorder transitions, In Order-Disorder Transformations in Alloys (1974) (pp. 180-239).
44. Zhang, C., Zhang, F., Diao, H., Gao, M. C., Tang, Z., Poplawsky, J. D., & Liaw, P. K., Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Materials & Design, 109 (2016) 425-433.
45. Lin, S., Shih, C. J., Sresht, V., Rajan, A. G., Strano, M. S., & Blankschtein, D., Understanding the colloidal dispersion stability of 1D and 2D materials: perspectives from molecular simulations and theoretical modeling, Advances in colloid and interface science, 244 (2017) 36-53.
46. Aaronson, H. I., Enomoto, M., & Lee, J. K., Mechanisms of diffusional phase transformations in metals and alloys, CRC Press (2016).
47. Huang, K. H., & Yeh, J. W., A study on the multicomponent alloy systems containing equal-mole elements, Hsinchu: National Tsing Hua University (1996)1-93.
48. Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Zhang, Y., & Wang, Y., Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy, Materials Science and Engineering: A, 648 (2015) 15-22.
49. Dasari, S., Jagetia, A., Chang, Y. J., Soni, V., Gwalani, B., Gorsse, S., & Banerjee, R., Engineering multi-scale B2 precipitation in a heterogeneous FCC based microstructure to enhance the mechanical properties of a Al0.5Co1.5CrFeNi1.5 high entropy alloy, Journal of Alloys and Compounds, 830 (2020)154707.
50. Chen, D., He, F., Han, B., Wu, Q., Tong, Y., Zhao, Y., & Kai, J. J., Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys, Intermetallics, 110 (2019) 106476.
51. Li, Z., Fu, L., Peng, J., Zheng, H., Ji, X., Sun, Y., & Shan, A., Improving mechanical properties of an FCC high-entropy alloy by γ′ and B2 precipitates strengthening, Materials Characterization, 159 (2020) 109989.

無法下載圖示 全文公開日期 2026/02/05 (校內網路)
全文公開日期 2030/02/05 (校外網路)
全文公開日期 2048/02/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE