簡易檢索 / 詳目顯示

研究生: 劉芳佐
Fang-tso Liu
論文名稱: 以水熱法製備之氧化鋅奈米桿之氣體感測特性
Gas sensing properties of ZnO nanorod prepared by hydrothermal method
指導教授: 劉進興
Chin-Hsin J. Liu
口試委員: 戴龑
Yian Tai
何國川
Kuo-Chuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 145
中文關鍵詞: 噴霧裂解法水熱法氧化鋅薄膜氧化鋅奈米桿表面缺陷氣體感測
外文關鍵詞: Spray pyrolysis, Hydrothermal method, ZnO thin film, ZnO nanorod, surface defects, gas sensor
相關次數: 點閱:453下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要分為兩個部分,第一部分為氧化鋅奈米桿之水熱法製備,並以之作為NO2氣體感測元件;第二部分探討氧化鋅奈米桿晶格中的缺陷濃度,及其對導電性及氨氣感測之影響。
藉由醋酸鋅及HMTA前驅物,透過水熱法成長之ZnO奈米桿,與透過噴霧裂解法製備的氧化鋅薄膜相較,擁有較高的體表面積比,因此對NO2感測之靈敏度較高且操作溫度也較低。另外,感測靈敏度也隨著氧化鋅奈米桿的長度而提高,其中以前趨物濃度為0.02 M,水熱溫度為110℃,成長三小時的氧化鋅奈米桿,其表面積最大,感測靈敏度最高,可偵測低於0.3 ppm 的NO2氣體。
氧化鋅奈米桿擁有兩個螢光光譜波峰,分別為~380 nm (可見光放光)以及450~700 nm(缺陷放光),其中後者的強度越強,表示氧缺陷濃度越高。這些缺陷經熱處理後明顯下降,尤其經由氮氣退火後的奈米桿缺陷濃度最低,對氨氣的感測靈敏度也隨著下降。但利用氧氣電漿處理後,可提高表面吸附之氧離子及氧缺陷濃度,因而提高氧化鋅奈米桿的感測靈敏度,其中以氧氣電漿改質五分鐘的氧化鋅奈米桿,其表面氧離子和缺陷濃度最高,氨氣感測靈敏度最大,可偵測低於0.4 ppm的氨氣。


This thesis consists of two parts. The first part describes the preparation of ZnO nanorods by a hydrothermal method, and the application of the ZnO nanorods as the NO2 gas sensor. The second part investigates the defects in the ZnO nanorod crystal and the effect of defect concentration on the conductivity and the NH3 sensing property on the ZnO nanorod.
Vertically aligned ZnO nanorod arrays are prepared by a hydrothermal method with zinc acetate and hexamethylenetetramine as precursors. The NO2 sensor based on the nanorod arrays shows a higher sensitivity and lower operating temperature as compared to the sensor based on the ZnO film prepared by ultrasonic spray pyrolysis. The enhanced sensitivity is attributed to the higher aspect ratio of the nanorod structure. The sensitivity of the sensor increases with the length of the ZnO nanorod. The ZnO nanorods grown with 0.02 M precursor concentration at 110℃ for 3h show the largest aspect ratio, the highest sensitivity, and can detect NO2 gas at the 0.3 ppm level.
ZnO nanorods show two peaks in the PL spectrum, the UV emission at ~380 nm and the visible emission at 450~700 nm. The latter is also called the defect emission, since its intensity increases with the concentration of oxygen defects. After an annealing in N2, defects are suppressed, which causes a decrease in the sensitivity towards NH3. On the other hand, an O2 plasma treatment can enhance the NH3 sensitivity due to the increase in surface adsorbed oxygen ions and oxgen defects. After treatment in O2 plasma for 5 minutes, the ZnO nanorods show the highest defect concentration and the highest NH3 sensitivity, with the detection limit lower than the 0.4 ppm level.

第一章 緒論 V 1.1 前言 1 1.2半導體型氣體感測器 3 1.3. 氣體感測器種類 4 1.4. 研究動機 7 第二章 文獻回顧 8 2.1 材料簡介 8 2.1.1 半導體(Semiconductor)介紹 8 2.1.2 氧化鋅(Zinc Oxide)簡介 8 2.2 晶體結構 10 2.2-1 晶相簡介 10 2.2.2 氧化鋅晶體結構 12 2.2.3 氧化鋅的缺陷(defects) 14 2.3 氧化鋅特性 18 2.3.1氧化鋅的導電性質 18 2.4 半導體感測器 35 2.4.1 氣體感測器的分類 35 2.4.2半導體式感測原理 37 2.4.3 氧化鋅的氣體感測 40 第三章 實驗方法及步驟 43 3.1 實驗藥品 43 3.2 實驗儀器 44 3.3 實驗流程 45 3.4 氧化鋁基板之清洗程序 46 3.5指叉(梳狀)電極之製作 47 3.6 種晶層之製備 50 3.7 奈米桿結晶製備 52 3.8 ZnO奈米桿之熱處理 53 3.9 ZnO奈米桿之電漿改質 53 3.10 結構分析與性質量測儀器 54 第四章 結果與討論 61 4.1氧化鋅薄膜與氧化鋅奈米桿的製備 61 4.1.1 噴霧裂解法 61 4.1.2 水熱法 62 A、 水熱濃度及時間對於奈米桿的影響 63 4.2 NO2氣體感測 68 4.2.1 氧化鋅表面形態的影響 68 A、 電子空乏區對於NO2感測的影響 68 B、 表面積對於NO2感測的影響 71 4.3 NH3氣體感測 79 4.3.1表面積的影響 79 A、 不同長度的奈米桿 79 4.3.2缺陷對於氧化鋅奈米桿的影響 82 A、 熱處理對於表面缺陷的影響 82 B、 電漿對於表面缺陷的影響 93 第五章 結論 124

[1] 施正雄, 科學發展月刊 27, 1184 (1999).
[2] A.W.Snow,W.R.Barger,M.Klusty,H.Wohltjen and N.L.Jarvis,Langmuir,2 (1986) 513
[3] K.Arshak,E.Moore,G.M.Lyons,J.Harris and S.Clifford,
Sensor Review,24 (2004) 181.
[4] Chien-Ting Kao,The design and the properties of semiconductor nanoparticles zinc oxide gas sensor(2000,Thesis)
[5] 鄭元政,Development of semiconductor type CO sensor by using thick-film screen printing method (2000,thesis)
[6] Abu Z. Sadek, Student Member, Supab Choopun, Wojtek Wlodarski, Member, Samuel J. Ippolito, and Kourosh Kalantar-zadeh, , IEEE SENSORS JOURNAL, VOL. 7, NO. 6, JUNE 2007
[7] L. Schmidt-Mende*, J. L. MacManus-Driscoll, Materialstoday 10, 40 (2007).
[8] C. Jagadish, S. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures, Elsevier (2006).
[9] D. Wang, X. Meng, Z. Chen, Q. Fu, Physica E, 40, 852 (2008).
[10] N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, Y. Lu, Mater. Sci. Semiconductor Process. 2, 247 (1999).
[11] Y. M. Chiang, D. BirnieⅢ, W. D. Kingery, Physical Ceramics, John Wiley & Sons, Inc. (1997).
[12] J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, B. H. Zhao, J. Appl. Phys. 101, 083705 (2007).
[13] L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, J. Phys. Chem. C 111, 1900 (2007).
[14] A.F.Kohan,G.Ceder,and D.Morgan,PHYSICAL REVIEW B,61 (2000) 150109
[15] K.H.Tam,C.K.Cheung,Y.H.Leung,A.B.Djurisic,C.C.Ling, C.D.Beling,S. Fung,W.M.Kwok,W.K.Chan,D.L.Phillips,L.Ding and W.K.Ge,Journal of Physical Chemistry B,110 (2006) 20865
[16] Anderson Janotti and Chris G. Van de Walle,Journal of Crystal Growth, 287 (2006) 58
[17] A. Umar, B. Karunagaran, E-K. Suh, Y. B. Hahn, Nanotechnology 17, 4072 (2006).
[18] H. Q. Le, S. J. Chua, Y. W. Koh, K. P. Loh, Z. Chen, C. V. Thompson, E. A. Fitzgerald, Appl. Phys. Lett. 87,101908 (2005).
[19] M. Guo, P. Diao, S. Cai, Journal of Solid State Chemistry 178, 1864 (2005).
[20] Y. Sun, N. George Ndifor-Angwafor, D. Jason Riley, Michael N. R. Arshfold, Chemical Physics Letters 431, 352 (2006).
[21] X. Liu, X. Hu, H. Cao, R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).
[22] Vanheusden, K.; Seager, C. H.; Warren, W. L.; Tallant, D. R.;
Voigt, J. A. Appl. Phys. Lett. 1996, 68, 403.
[23] Dijken, A. van; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. J. Phys. Chem. B 2000, 104, 1715.
[24] Zhao, Q. X.; Klason, P.; Willander, M.; Zhong, H. M.; Lu, W.;Yang, J. H. Appl. Phys. Lett. 2005, 87, 211912.
[25] Lin, B.; Fu, Z.; Jia, Y. Appl. Phys. Lett. 2001, 79, 943.
[26] Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.;
Zhang, Y.; Saykally, R. J.; Yang, P. Angew. Chem., Int. Ed. 2003, 42, 3031.
[27] Li, D.; Leung, Y. H.; Djuris ˇic ´, A. B.; Liu, Z. T.; Xie, M. H.; Shi, S. L.; Xu, S. J.; Chan, W. K. Appl. Phys. Lett. 2004, 85, 1601.
[28] Zhou, H.; Alves, H.; Hofmann, D. M.; Kriegseis, W.; Meyer, B.
K.; Kaczmarczyk, G.; Hoffmann, A. Appl. Phys. Lett. 2002, 80, 210.
[29] Norberg, N. S.; Gamelin, D. R. J. Phys. Chem. B 2005, 109, 20810.
[30] Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, and D. P. Yua, Appl. Phys. Lett. 88, 033102 (2006)
[31] Abu Z. Sadek, Supab Choopun, Wojtek Wlodarski,Samuel J. Ippolito and Kourosh Kalantar-zadeh , IEEE SENSORS JOURNAL,7 (2007) 919
[32] Bixia Lin and Zhuxi Fu, Yunbo Jia, Appl. Phys. Lett. 79, 7(2001)
[33] Volodymyr Khranovskyy , Jens Eriksson, Anita Lloyd-Spetz, Rositza Yakimova, Lars Hultman, Thin Solid Films 517 (2009) 2073–2078
[34] Y.J. Xing, Z.H. Xi, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Z.Q. Xue,D.P. Yu, Solid State Commun. 129 (2004) 671.
[35] C.Y. Geng, J. Yang, Y. Yuan, X.M. Meng, J.A. Zapien, C.S. Lee, Y.
Lifshitz, S.T. Lee, Adv. Funct. Mater. 14 (6) (2004) 589.
[36] X. Wang, Q.W. Li, Z.B. Liu, J. Zhang, Z.F. Liu, R.M. Wang, Appl. Phys.Lett. 84 (2004) 4941
[37] W.I. Park, D.H. Kim, S.-W. Jung, G.-C. Yi, Appl. Phys. Lett. 80 (2002) 4232.
[38] L.E. Greene,M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, P.D. Yang, Angew. Chem. Int. Ed. 42 (2003) 3031.
[39] L. Vayssiere, K. Keis, A. Hagfeldt, S. Lindquist, Chem. Mater. 13 (12)(2001) 4395
[40] Hongmei Hu, Ke Yu, Jianzhong Zhu, Ziqiang Zhu, Applied Surface Science 252 (2006) 8410–8413
[41] K. Ogata, K. Sakurai, Sz. Fujita, Sg. Fujita, K. Matsushige, J. Cryst. Growth 214/215 (2000) 312.
[42] F. Hossein-babaei, F. Taghibakhsh, IEEE Xplore, Electron. Lett. 36 (2000) 1815.
[43] O. Agyeman, C.N. Xu, W. Shi, X.G. Zheng, M. Suzuki, Jpn. J. Appl. Phys. 41 (2002) 666.
[44] R. Ghosh et al. /Materials Research Bulletin 40 (2005) 1905–1914
[45] K.J. Laidler, Chemical Kinetics, second ed., TMG Publi. Com. Ltd., chapter 6, pp. 310–311.
[46] M.S. Wagh et al. / Sensors and Actuators B 115 (2006) 128–133
[47] B.T. Marquis, J.F. Vetelino/Sensor and Actuators B 77 (2001) 100-110
[48] S.T. Shishiyanu et al. / Sensors and Actuators B 107 (2005) 379–386
[49] 施敏,SEMICONDUCTOR DEVICES,p.31~33
[50] Zhang K Y, Cheng G and Moskovits M 2003 Adv. Mater. 15 997
[51] Van de Walle C G 2000 Phys.Rev.Lett. 85 1012
[52] Cox S F J et al 2001 Phys.Rev.Lett. 86 2601
[53] Hoffman D H, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyr B K, Orlinskii S B, Schmidt J and Baranov P G 2002 Phys. Rev. Lett. 88 45504
[54] Ra H-W, Choi K S, Ok CW, Jo S Y, Bai K H and Im Y H 2008 Appl. Phys. Lett. 93 033112
[55] H-W Ra and Y-H Im, Nanotechnology 19 (2008) 485710
[56] A B Djurisic, Y H Leung et al, Nanotechnology 18 (2007) 095702
[57] C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, C. Zhou, Appl. Phys. Lett.82 (2003) 1613.
[58] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 (2000) 622.
[59] G. Heiland, D. Kohl, in: T. Seiyama (Ed.), Chemical Sensor Technology, vol. 1, Kodansha, Tokyo, 1988, pp. 15–38 (Chapter 2).
[60] T.T.Wol’kenstain, The Theory of Electronic Catalysis on Semiconductors, Pergamon, Oxford, 1963.
[61] Z. Bai et al. / Materials Science and Engineering B 149 (2008) 12–17
[62] Hong-Ying Wang and Jerome B. Lando,Langmuir,10 (1994) 790
[63] Dainius Perednis and Ludwig J.Gauckler,Journal of Electroceramics, 14 (2005) 103
[64] 劉如熹、紀喨勝,”紫外光發光二極體用螢光粉介紹”,全華科技,(2003)
[65] 張木彬、李灝銘,國立中央大學環境工程研究所,「電漿處理技術於環境工程之應用與發展趨勢」。
[66] H. Yasuda and C. R. Wamg, J. Polym. Sci., Polym. Chem. Ed., 16:743(1973)
[67] K.-C. Ho, J.-Y. Liao / Sensors and Actuators B 93 (2003) 370–378
[68] B. J. Lokhande, P. S. Patil, M. D. Uplane, Matter. Lett. 57, 573 (2002).
[69] Y. Sun, D. Jason Riley, Michael N. R. Arshfold, J. Phys. Chem. B 110, 15186 (2006).
[70] D. Wang, C. Song, Z. Hu, W. Chen, X. Fu, Materials Letters 61, 205 (2007).
[71] C. C. Li et al, Appl. Phys. Lett. 91, 032101 (2007).
[72] Z. Gergintschew, H. Förster, J. Kositza, D. Schipanski: Sens. ActuatorsB 26–27, 170 (1995)
[73] M. Egashira, Y. Shimizu, Y. Takao, S. Sako: Sens. Actuators B 35–36,62 (1996)
[74] J. Xu, Q. Pan, Y. Shun, Z. Tian: Sens. Actuators B 66, 277 (2000)
[75] M. Law, H. Kind, B. Messer, F. Kim, P. Yang: Angew. Chem. Int. Ed. 41,2405 (2002)
[76] Wang, Summers, and Wang Appl. Phys. Lett. 86, 013111 (2005)
[77] A. K. Mishra, S. K. Chaudhuri, S. Mukherjee, A. Priyam, A. Saha, A.Saha, and D. Das, Journal of applied physic 102,103514(2007)
[78] Teke, A.; O ‹ zgu ¨r, U ‹ .; Dog ˇan, S.; Gu, X.; Morkoc ü , H.; Nemeth, B.; Nause, J.; Everitt, H. O. Phys. ReV.B 2004, 70, 195207.
[79] Gomi, M.; Oohira, N.; Ozaki, K.; Koyano, M. Jpn. J. Appl. Phys. 2003, 42, 481.
[80] L.H. Quang et al., Journal of Crystal Growth 287 (2006) 157–161
[81] Lin, Fu, and Jia. Appl. Phys. Lett., Vol. 79, No. 7, 13 August 2001
[82] Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M. Phys. Status Solidi B 2004, 241, 616.
[83] Coppa, B.; Davis, R. F.; Nemanich, R. J. Appl. Phys. Lett. 2003, 82, 400.
[84] Ye, J. D.; Gu, S. L.; Qin, F.; Zhu, S. M.; Liu, S. M.; Zhou, X.; Liu, W.; Hu, L. Q.; Zhang, R.; Shi, Y.; Zheng, Y. D.; Ye, Y. D. Appl. Phys. A: Mater. Sci. Process. 2005, 81, 809.
[85] H. Y. Yu, Y. C. Liu, R. Mu, C. L. Shao, Y. M. Lu, D. Z. Shen, and X. W. Fan, Appl. Phys. Lett. 86, 123107 2005.
[86] Z. Y. Fan, D. W. Wang, P.-C. Chang, W.-Y. Tseng, and J. G. Lu, Appl.Phys. Lett. 85, 5923 2004.
[87] N. Barsan, U. Weimar, J. Electroceram. 7 (2001) 143.
[88] Kim H J, Lee C H, Kim D Wand Yi G C 2006 Nanotechnology
17 S327
[89] Chang P-C, Fan Z, Chien C-J, Stichtenoth D and Ronning C 2006 Appl. Phys. Lett. 89 133113
[90] Liu J, Gao P, Mai W, Lao C, Wang Z L and Tummala R 2006
Appl. Phys. Lett. 89 63125
[91] X.Q. Meng et al. / Chemical Physics Letters 413 (2005) 450–453
[92] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T.Yao, J. Appl. Phys. 84, 3912 (1998).
[93] J. M. Lee, K. M. Chang, S. W. Kim, C. Huh, I. H. Lee, and S. J. Park, J.Appl. Phys. 87, 7667 (2000).
[94] D. W. Jenkins and J. D. Dow, Phys. Rev. B 39, 3317 (2000).
[95] Le, Tripathy, and Chua, Appl. Phy. Lett. 92, 141910 (2008)
[96] Lee et al. Appl. Phys. Lett., Vol. 78, No. 24, 11 June 2001
[97] M. Liu and H. K. Kim, Appl. Phys. Lett., Vol. 84, No. 2, 12 January 2004.
[98] Li et al. Appl. Phys. Lett. 91, 032101 (2007).
[99] T. Yamamoto and H. Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2 38, L166 (1999).
[100]G. Neumann, in Current Topics in Materials Science, edited by E. Kaldis, Vol. 7, Pt. 1, pp. 153–168.

QR CODE