簡易檢索 / 詳目顯示

研究生: 梁敬杰
Ching-Chieh Liang
論文名稱: 柱基板基礎之數值分析
Numerical Analysis of Pedestal under Column Base Plate
指導教授: 陳生金
Sheng-Jin Chen
口試委員: 邱建國
Chien-Kuo Chiu
廖國偉
Kuo-Wei Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 109
中文關鍵詞: 柱基板基礎混凝土開裂發展混凝土應力錐錨定類型有限元素法
外文關鍵詞: Pedestal, Concrete crack propagation, Concrete cone, Anchor type, Finite element method
相關次數: 點閱:195下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  雖然目前關於柱基板接頭與錨栓之設計已有大量的研究論文與相關規範訂定,但針對混凝土柱基板基礎相關之研究甚少,假設之力學行為也過於簡化,因此本論文將進一步探討混凝土柱基板基礎之開裂發展與開裂分佈之行為。
  本論文將以有限元素分析軟體分別探討:混凝土柱基礎尺寸大小、錨栓有效埋置深度、錨栓錨定類型對柱基板基礎之影響。實驗結果發現,柱基板接頭之錨栓應力錐發展與單拉試驗錨栓應力錐發展不同,此外,混凝土能力設計法 (CCD) 在錨栓埋置深度較深的情況下會高估混凝土破壞面面積,建議在計算混凝土拉破強度時,應加入一個隨錨栓有效埋置深度遞減的強度修正係數。


  Although there are many research studies and regulations about the base plate and anchor rod design, we still know very little about the behavior of pedestal under column base plate. Also, modeling assumptions in mechanics of the column base plate connection are too simplified. Hence, this paper will explore further the development of concrete cracking distribution.
  Here are the topics that will be analyzed by finite element program: the concrete size, the effective embedment depth of the anchor rod and the anchor type. Analysis results indicated that the concrete cone developed under the column base plate is different from the concrete cone developed by a monotonic tensile load. In addition, the Concrete Capacity Design (CCD) method will overestimate the projection of failure area in deep embedment depth cases. It is recommended that it should add a descending factor with the embedment depth while calculating the concrete breakout strength.

摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 研究方法 5 1.4 研究內容 5 第二章 文獻探討 8 2.1 相關設計規範 8 2.1.1 AISC 柱基板與錨栓設計手冊第二版[7] 8 2.1.2 ACI-318-14 混凝土結構建築規範與解說[2] 11 2.1.3 混凝土能力設計 (CCD)[8] 13 2.2 柱基板與錨栓設計相關研究 18 第三章 有限元素分析與驗證 21 3.1 軟體介紹 21 3.2 材料性質 23 3.2.1 鋼材料性質 23 3.2.2 混凝土材料性質 26 3.3 幾何模型建立 28 3.3.1 網格劃分 28 3.3.2 接觸分析 32 3.3.3 邊界條件與分析設定 33 3.4 有限元素模型驗證 33 3.5 試驗規劃 37 3.6 行為指標 39 3.6.1 層間變位角 39 3.6.2 Von Mises 等值應力 39 3.6.3 最大主應力 40 3.6.4 PLCRACK 40 第四章 分析結果與討論 41 4.1 邊距大小之影響 41 4.1.1 降伏區域 41 4.1.2 錨栓總拉力 47 4.1.3 混凝土最大主應力 49 4.1.4 混凝土開裂分佈 54 4.1.5 混凝土開裂發展 62 4.2 錨栓埋深之影響 67 4.2.1 錨栓總拉力 67 4.2.2 柱基板接頭變形圖 67 4.2.3 混凝土開裂分佈 72 4.3 錨定類型之影響 78 4.3.1 錨栓總拉力 78 4.3.2 錨栓應力變形圖 80 4.3.3 混凝土開裂分佈 84 第五章 結論與建議 88 5.1 結論 88 5.2 建議 89 參考文獻 92 附錄 95 混凝土材料性質 APDL Command 95

1.陳生金,《鋼結構行為與設計》,科技圖書,2009,P129-131。
2.ACI, ACI. 318-14. Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, Michigan, 2014.
3.Tsavdaridis, Konstantinos Daniel, et al. Analytical approach of anchor rod stiffness and steel base plate calculation under tension. In: Structures. Elsevier, 2016. p. 207-218.
4.江謝圻,《柱基板之雙向抗彎矩設計》,2017,PhD Thesis。
5.Lee Dae-Yong; Goel, Subhash C.; Stojadinovic, Bozidar. Exposed column-base plate connections bending about weak axis: II. experimental study. International Journal of Steel Structures, 2008, 8.1: 29-41.
6.Lee, Dae-Yong; Goel, Subhash C.; Stojadinovic, Bozidar. Exposed column-base plate connections bending about weak axis: I. Numerical parametric study. International Journal of Steel Structures, 2008, 8.1: 11-27.
7.Fisher, James M.; Kloiber, Lawrence A. Base plate and anchor rod design. American Institute of Steel Construction, 2006.
8.Fuchs, Werner; Eligehausen, Rolf; Breen, John E. Concrete capacity design (CCD) approach for fastening to concrete. Structural Journal, 1995, 92.1: 73-94.
9.Grauvilardell, Jorge E., et al. Synthesis of design, testing and analysis research on steel column base plate connections in high seismic zones. Structural engineering report no. ST-04-02. Minneapolis (MN): Department of Civil Engineering, University of Minnesota, 2005.
10.Lee, D. and Goel, S. C. Seismic Behavior of Column-Base Plate Connections Bending about Weak Axis. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, 2001, Report No. UMCEE 01-09.
11.Akiyama, H., Yamada, S., Takahashi, M., Katsura, D., Kumura, K., and Yahata, S. Full Scale Shaking Test of the Exposed-Type Column Bases. Journal of Structural and Construction Engineering, Transactions of AIJ, 1998, No. 514, pp. 185-192.
12.Fahmy, M. Seismic Behavior of Moment-resisting Steel Column Bases. Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, 1999.
13.Adany, S., Calado, L., and Dunai, L. Experimental Studies on Cyclic Behavior Modes of Base-Plate Connections. Proceedings of the Third International Conference on the Behavior of Steel Structures in Seismic Areas ( STESSA 2000), Montreal, Canada, 2000, 97-104.
14.Kohnke, Peter C. (ed.). ANSYS Theory Reference: Release 5.6. ANSYS, Incorporated, 1998.
15.施柏安,《以有限元素法探討加勁板於柱基板行為之影響》,2010,PhD Thesis。
16.Al-gburi, Majid. Non Linear Three Dimensional Finite Elemnts Analyses of Reinforced Concreete Beams Strengthened by CFRP, 2010.
17.林意晴,《鋼梁接 SRC 柱之梁柱接頭力學行為之數值模擬分析》,2009,PhD Thesis。
18.王琳,《鋼骨鋼筋混凝土 (SRC) 短柱軸壓行為與圍束效應之數值模擬研究》,2009,PhD Thesis。
19.Petersen, D.; Lin, Z.; Zhao, J. Behavior and design of cast-in-place anchors under simulated seismic loading. Draft Final Report, 2013, 1.

QR CODE