簡易檢索 / 詳目顯示

研究生: 林君維
Chun-Wei Lin
論文名稱: 利用非傳統製程技術開發全尺寸人體肺部支氣管模型用於藥物定量研究
Developing a full-size lung bronchus Model by non-traditional fabrication process for Drug quantitative study
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 高震宇
Chen-Yu Kao
劉承賢
Cheng-Hsien Liu
劉偉修
Wei-Hsiu Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 108
中文關鍵詞: 肺部支氣管藥物於肺部傳輸分析三維全尺寸透明醫療模型
外文關鍵詞: Lung bronchi, Analysis of drug delivery to the lungs, Three-dimensional full-size transparent medical model
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經由統計發現,台灣隨著都市化、工業化以及氣候變遷等因素,使得罹患肺部支氣管疾病的人數大幅提升,其中又以氣喘最為盛行。目前治療氣喘的方式以吸入性藥物傳輸為主,因此藥物在被患者使用的同時,是否能確實並有效地傳送至肺部深處且被患部所吸收是相當重要的。透過一些文獻可知,先前許多研究都是利用電腦模擬軟體來進行肺部的給藥分析,而近幾年則是分別對大支氣管及肺部末端之肺泡模型,但始終仍缺乏一個完整的肺部支氣管模型進行給藥的模擬分析。
    為了了解吸入性藥物是否能確實的傳送至肺部深處且被有效的吸收,本研究利用是來自日本山口大學的Fei Jiang教授所提供的肺部支氣管電腦斷層掃描檔案,使用非傳統加工製程來製作一全尺寸三維且透明肺部支氣管模型。製程步驟包括內外模具的設計、利用熔融擠製型3D列印機製作出內外模具、蒸氣表面拋光及後處理、彈性材料之澆鑄及兩階段的內模溶解技術,以製作出完整的肺部支氣管模型。
    此一全尺寸且透明肺部支氣管模型完成後,本研究將建立一呼吸模擬器以模擬真實人體在使用噴霧治療器的情況下肺部的給藥情形,利用所製作出的口喉模型搭配噴霧治療器以及碘顯影劑將藥物傳送到肺部支氣管模型當中,並使用流量計和三向閥以模擬人體真實的流量,最後連接真空汞以模擬恆定的呼吸。接著使用電腦斷層掃描儀 (Computed Tomography)對給藥後的肺部支氣管模型進行掃描,並搭配醫學用軟體Materialise Mimics進行藥物於肺部支氣管內之沉積分析。


    Statistics found in the past 30 years, in Taiwan, the number of people suffer from lung bronchial diseases has greatly increased. Among them, asthma is the most prevalent. For patients with asthma, most of the current medical treatments use inhaled drug delivery for treatment. Therefore, it is very important that the drug can be delivered to the deep lungs and effectively absorbed when it is used by patients. It can be seen from some literatures that many previous studies have used computer simulation software to analyze the drug delivery of the lungs. In recent years, simulation analysis of drug administration has been performed on the bronchi and the alveolar model of the lung terminal, but there has never been a complete model to complete the simulation.
    In order to understand whether inhaled drugs can be delivered to the deep lungs and be effectively absorbed. In this study, a lung bronchi model provided by Professor Fei Jiang from Yamaguchi University in Japan was used to create a three-dimensional elastic lung bronchus model using a non-traditional process. In the process, through the design of internal and external molds, the use of melt extrusion 3D printing mechanism to make internal and external molds, steam surface polishing, elastic material casting and demoulding technology, and finally made a three-dimensional elastic lung bronchi model.
    Then, using the created three-dimensional elastic lung bronchial model, establish a breathing simulator to simulate the actual drug delivery of the lungs of the human body using a nebulizer. In order to understand the situation of drug deposition, this study used a computer tomography scanner to scan the lung bronchi model, and use medical software Materialise Mimics for deposition analysis to establish a quantitative mechanism of drug deposition.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 3 1.3 研究方法 5 1.4論文架構 6 第二章 文獻回顧 8 2.1 何謂氣喘? 8 2.2 肺部模型製造 12 2.2.1三維流道製程 12 2.2.2 分模法 14 2.3 沉積定量文獻回顧 16 2.3.1肺部模型沉積定量分析 16 2.3.2 肺部計算流體力學定量(CFD)分析 19 2.3.3 電腦斷層掃描沉積定量分析 24 第三章 全尺寸透明肺部支氣管模型製程 30 3.1 模具設計 33 3.1.1 內模具設計 33 3.1.2 外模具設計 35 3.2 3D列印模具製作 42 3.2.1 3D列印簡介 42 3.2.2 3D列印機之操作使用方式 43 3.2.3 3D列印製作肺部支氣管模具 47 3.3 PDMS澆鑄翻模製程 54 3.3.1 肺部支氣管內模具表面拋光製程 56 3.3.2 肺部支氣管外模具表面拋光製程 58 3.3.3 PDMS材料之備製以及澆鑄方法 59 3.4 肺部支氣管兩階段溶解製程 63 第四章 研究設備 66 4.1製程設備、材料及軟體 66 4.2 實驗設備及軟體 69 第五章 三維全尺寸模型內之藥物沉積定量機制 72 5.1 建立呼吸模擬器 72 5.1.1噴霧治療器介紹 73 5.1.2替代的藥物 73 5.1.3口喉模型的設計 74 5.1.4 吸入流量 76 第六章 電腦斷層掃描之沉積定量分析 78 6.1電腦斷層掃描 78 6.2 Materialise Mimics軟體分析方法 80 6.3建立藥物沉積之定量機制 83 第七章 結論與未來展望 86 7.1結論 86 7.2未來展望 88 參考文獻 90

    [1] 陳翊菁(2019)。利用非傳統機械製程建構專業醫療教育訓練之人工動脈瘤模型。國立臺灣科技大學機械工程系碩士論文,台北市。
    [2] 周敬展(2017)。利用3D列印模具和超音波溶解技術來製作全透明且非平面微流道晶片。國立臺灣科技大學機械工程系碩士論文,台北市。
    [3] GANJU, Aruna, 等人 The role of simulation in neurosurgical education: a survey of 99 United States neurosurgery program directors. World neurosurgery, 2013, 80.5: e1-e8.
    [4] EL AHMADIEH, Tarek Y., et al. A didactic and hands-on module enhances resident microsurgical knowledge and technical skill. Neurosurgery, 2013, 73.suppl_1: S51-S56.
    [5] http://dr.hosp.ncku.edu.tw/1_6_in.asp?page=15&num=253&dep(成大醫院內科-衛教園地)
    [6] http://hometechmedical.com/index.php?route=information/information&information_id=37
    [7] https://epaper.ntuh.gov.tw/health/201709/project_1.html (臺大醫院-健康電子報 2017)
    [8] http://asthma-copd.tw/images/files/Brochure/0007.pdf (氣喘與慢性阻塞性肺病吸入治療,臺灣胸腔暨重症加護醫學會出版 2016)
    [9] https://blog.xuite.net/home.care/homecare/12367198-氣動式噴霧器
    [10] LONGEST, P. Worth, et al. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharmaceutical research, 2012, 29.6: 1670-1688.
    [11] ALI, Mohammed. Pulmonary drug delivery. In: Handbook of Non-Invasive Drug Delivery Systems. William Andrew Publishing, 2010. p. 209-246.
    [12] AHOOKHOSH, Kaveh, et al. Experimental investigation of aerosol deposition through a realistic respiratory airway replica: An evaluation for MDI and DPI performance. International journal of pharmaceutics, 2019, 566: 157-172.
    [13] Tenenbaum-Katan J, Artzy-Schnirman A, Fishler R, Korin N, Sznitman J. Biomimetics of the pulmonary environment in vitro: A microfluidics perspective. Biomicrofluidics. 2018 Jul 29;12(4):042209.
    [14] Tavana H, Huh D, Grotberg JB, Takayama S. Microfluidics, lung surfactant, and respiratory disorders. Laboratory Medicine. 2009 Apr 1;40(4):203-9.
    [15] Chrystyn H, Safioti G, Keegstra JR, Gopalan G. Effect of inhalation profile and throat geometry on predicted lung deposition of budesonide and formoterol (BF) in COPD: an in-vitro comparison of Spiromax with Turbuhaler. International journal of pharmaceutics. 2015 Aug 1;491(1-2):268-76.
    [16] XI, Jinxiang; LONGEST, P. Worth; MARTONEN, Ted B. Effects of the laryngeal jet on nano-and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. Journal of Applied Physiology, 2008, 104.6: 1761-1777.
    [17] KADOTA, Kazunori, et al. Effects of inhalation procedure on particle behavior and deposition in the airways analyzed by numerical simulation. Journal of the Taiwan Institute of Chemical Engineers, 2018, 90: 44-50.
    [18] LONGEST, P. Worth; HOLBROOK, Landon T. In silico models of aerosol delivery to the respiratory tract—development and applications. Advanced Drug Delivery Reviews, 2012, 64.4: 296-311
    [19] Kolanjiyil AV, Kleinstreuer C. Computational analysis of aerosol-dynamics in a human whole-lung airway model. Journal of Aerosol Science. 2017 Dec 1;114:301-16.
    [20] OZBOLAT, Veli, et al. 3D printing of PDMS improves its mechanical and cell adhesion properties. ACS Biomaterials Science & Engineering, 2018, 4.2: 682-693.
    [21] HWANG, Yongha, et al. 3D printed molds for non-planar PDMS microfluidic channels. Sensors and Actuators A: Physical, 2015, 226: 137-142.
    [22] GLICK, Casey C., et al. Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding. Microsystems & nanoengineering, 2016, 2: 16063.
    [23] HE, Yong, et al. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Scientific reports, 2014, 4: 6973.
    [24] XI, Jinxiang, et al. Visualization of local deposition of nebulized aerosols in a human upper respiratory tract model. Journal of Visualization, 2018, 21.2: 225-237.
    [25] LIN, Chun-Kai, et al. Aerosol delivery into small anatomical airway model through spontaneous engineered breathing. Biomicrofluidics, 2019, 13.4: 044109.
    [26] Fishler R, Hofemeier P, Etzion Y, Dubowski Y, Sznitman J. Particle dynamics and deposition in true-scale pulmonary acinar models. Scientific reports. 2015 Sep 11;5:14071.
    [27] QI, Shouliang, et al. Transient dynamics simulation of airflow in a CT-scanned human airway tree: more or fewer terminal bronchi?. Computational and mathematical methods in medicine, 2017, 2017.
    [28] BIDDISCOMBE, Martyn, et al. Drug particle size and lung deposition in COPD. European Respiratory Journal, 2016.
    [29] ISLAM, Mohammad S., et al. Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract. Journal of Aerosol Science, 2017, 108: 29-43.
    [30] KOULLAPIS, P. G., et al. An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung. European Journal of Pharmaceutical Sciences, 2018, 113: 132-144.
    [31] XI, Jinxiang; LONGEST, P. Worth. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Annals of biomedical engineering, 2007, 35.4: 560-581.
    [32] POORBAHRAMI, Kamran; OAKES, Jessica M. Regional flow and deposition variability in adult female lungs: A numerical simulation pilot study. Clinical Biomechanics, 2019, 66: 40-49.
    [33] HERLEMANN, Annika, et al. 68Ga-PSMA positron emission tomography/computed tomography provides accurate staging of lymph node regions prior to lymph node dissection in patients with prostate cancer. European urology, 2016, 70.4: 553-557.
    [34] ELLMANN, Hanna, et al. Effects of Conventional Uric Acid–Lowering Therapy on Monosodium Urate Crystal Deposits. Arthritis & Rheumatology, 2020, 72.1: 150-156.
    [35] PORRA, Liisa, et al. Quantitative imaging of regional aerosol deposition, lung ventilation and morphology by synchrotron radiation CT. Scientific reports, 2018, 8.1: 1-10.
    [36] Guillon A, Sécher T, Dailey LA, Vecellio L, De Monte M, Si-Tahar M, Diot P, Page CP, Heuzé-Vourc’h N. Insights on animal models to investigate inhalation therapy: relevance for biotherapeutics. International journal of pharmaceutics. 2018 Jan 30;536(1):116-26.
    [37] https://www.ukmeds.co.uk/airflusal-mdi
    [38] https://lian-ou.com/v2/goods/3eubdtj2etc9y?wap_view=1
    [39] https://www.omronhealthcare.com.tw/product/ins.php?index_prm_id=15&index_id=75
    [40] TIAN, Geng, et al. Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data. Pharmaceutical research, 2015, 32.10: 3170-3187.

    無法下載圖示 全文公開日期 2025/08/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE