簡易檢索 / 詳目顯示

研究生: 蔡宏琪
Tsai - Hong CI
論文名稱: 非侵入式循環生理參數量測分析系統之研製
Construction and elementary function of Non-invasive circulation physiology parameter measurement analysis system
指導教授: 許昕
Hsin Hsiu
口試委員: 許家良
hsu chia liang
高震宇
kao chen yu
鮑建國
pao chien kuo
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 98
中文關鍵詞: 非侵入式循環生理
外文關鍵詞: Non-invasive, circulation physiology
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受到近幾年來醫療、衛生及生活形態的影響,慢性病(如心臟疾病、中風、癌症及糖尿病)已取代急性傳染病成為已開發或開發中國家的主要疾病。慢性病除了損害個人健康外,也會對家庭經濟及國家醫療支出造成沉重負擔。因此慢性病的防治與治療成為世界各國所著重的課題。目前醫院具備多種慢性病偵測方式,但醫療成本還是逐年高漲,如果能夠落實每天居家定時檢測,或許才能發揮早期偵測的效用。目前國內外各大廠積
    極投入與研發居家診斷儀器,但面臨(1)硬體操作不方便、量測不夠精確(2)軟體分析缺乏可有效應用於疾病分析之指標、(3)量測結果缺乏臨床驗證等瓶頸,都尚未有顯著的成果出現。
    有鑑於此,本研究從循環供血角度切入思考,血流供應與各生理組織運作息息相關。因此從循環供血尋找疾病指標或許能達到慢性病早期偵測。結合本實驗室過去累積臨床疾病指標與建置軟、硬體基礎。本研究自行開發心電圖(ECG)、動脈血壓波形(BPW)、血管光容積(PPG)量測系統,與現有設備雷射督卜勒血流儀(LDF),搭配軟體分析程式建構出非侵入式循環生理參數量測分析系統。
    本量測系統可以得到血液從心臟端一直到微循環端的資訊,可更了解血液循環系統中,從上游到下游的關係,上游我們量測心電訊號觀察心臟端狀態,在中游我們量測動脈管壁的傳遞過程,下游則是量測微循環端供血狀態,並運用非侵入式量測技術快速評估動脈管與局部血流的循環狀態,再以6項實驗來驗證本量測系統硬體穩定度與程式分析可靠度。
    本量測系統在硬體部分已達到可自製、成本低、體積小、操作便利、接線簡單、量測精確又安全等優勢,藉由相關軟體分析實驗驗證本量測系統穩定可靠,具有良好的解析能力。能夠解決前述遠距醫療發展成本太高、實用性不高、不具生理意義等問題,期望未來能落實遠距醫療與居家照護。在預防醫學上,藉由數據變化之趨勢能與多種慢性疾病相互連結,真正落實早期發現與治療,提升臨床應用價值,本量測系統將協助世人共同對抗慢性病的威脅。


    In recent years, with the influences of medical, health and lifestyles, chronic diseases like heart disease, stroke, cancer and diabetes has replaced acute infectious disease as the main diseases in developed or developing countries. Chronic diseases not only can damage one’s health but also cause a heavy burden for the family economy and medical expenses of nations. Therefore, how to prevent and treat chronic diseases has become an important issue for all counties around the world. Currently, hospitals have a variety of ways to detect chronic disease, but the medical costs are still getting higher year by year or if it can be implemented at home every day which may result in an early detection. At present, manufacturers actively devote to the research and development of home diagnostic instruments, but there are no significant breakthroughs due to following bottlenecks: (1) hardware is not convenient to operate and measurement is not precise enough;(2) software analysis is lack of effective criterion for applying to analysis of disease; (3) measurement results are lack of clinical proven.

    In view of this, this study took the perspective on the circulation of blood that blood supply and the operation of the physiological organization are interacting. Therefore, we try to find disease indicators from the blood supply and probably obtain the early detection of chronic diseases. Combining with long accumulative clinical disease index and building software and hardware bases in our laboratory, the study adopted self-developed Electrocardiogram (ECG), Blood Pressure Waveform (BPW), Photo plethysmography (PPG) measuring system and the existing Laser Doppler Flowmeter (LDF) with software analysis program to construct non-intrusive measuring and analysis system of circulation physiological parameters.

    The measuring system can obtain information of blood which is from the heart to the microcirculation side, a better understanding of the relationship in blood circulation system from upstream to downstream. Upstream we measured signals of the heart telecommunication to observe the state in cardiac side; in midstream we measured the transfer process of arterial wall; downstream blood supply status of microcirculation was measured. In addition, we used non-intrusive measuring technique to rapidly assess circulatory state of arteries and local blood flow and six experiments to verify the hardware stability and program reliability analysis of the measuring system.

    This measuring system’s hardware has advantages of self-production, low cost, small size, convenient operation, simple wiring, precise measurement and safe. By relevant experiment of software analysis has verified the measuring system is stable and reliable with good analytical capability, which can solve the above-mentioned problems of telemedicine, such as high cost, not practicable and physiological significance. We hope implementations of telemedicine and home care can be achieved in the future. In preventive medicine, utilizing the connection between the trend of data change and a variety of chronic diseases to realize implementations of early detection and treatment, to improve the values of clinical application as well as the measuring system will together help people to cope with chronic diseases.

    第一章 緒論 1.1 研究背景1 1.1.1 慢性病的威脅1 1.1.2 慢性病導致醫療成本高漲2 1.1.3 早期診斷與治療4 1.1.4居家量測儀器投入現況與技術瓶頸5 1.2 循環生理供血發展契機6 1.2.1循環供血之思考6 1.2.2血液動力學發展歷史8 1.3 研究動機與目的13 1.3.1研究動機13 1.3.2研究目的13 1.4 軟硬體建置之規格需求14 1.4.1來自設備硬體上的需求14 1.4.2來自軟體分析上的需求14 1.4.2.1心電訊號(ECG)量測之規格需求15 1.4.2.2血壓波形(BPW)量測之規格需求16 1.4.2.3血管光容積(PPG)量測之規格需求17 1.4.2.4雷射督卜勒血流訊號(LDF)量測之規格需求18 第二章 量測系統建置 2.1 心電訊號(ECG)量測系統建置20 2.1.1 ECG原理與建置儀器目的20 2.1.2 ECG硬體功能需求21 2.1.3 ECG系統方塊圖22 2.2 動脈血壓波形(BPW)量測系統建置27 2.2.1 BPW原理與建置儀器目的27 2.2.2 BPW硬體功能需求28 2.2.3 BPW系統方塊圖29 2.3血管光容積變化(PPG)量測系統建置34 2.3.1 PPG原理與建置儀器目的34 2.3.2 PPG硬體功能需求35 2.3.3 PPG系統方塊圖36 2.4數位類比擷取卡(Data Acquistion Card, DAQ card) 39 2.5雷射都普勒血流計(Laser Doppler Flowmetry, LDF) 40 第三章 量測系統整合與建置 3.1循環生理量測系統介紹41 3.2自製硬體電路介紹42 3.3量測系統操作說明43 3.3.1量測操作說明與量測結果43 3.3.2資料擷取操作說明44 3.4軟體分析-分析流程與參數介紹45 3.4.1資料分析流程45 3.4.2分析參數介紹46 3.4.2.1 BPW、PPG時域、諧波分析46 3.4.2.2 BPW、PPG時域參數定義47 3.4.2.3 LDF時域分析49 第四章實驗設計與流程 4.1實驗流程52 4.2實驗前置53 4.3實驗操作步驟53 4.4實驗進行56 4.5實驗結束56 第五章 實驗結果 5.1比較ECG、BPW、PPG數位濾波前後時域差異59 5.1.1 ECG數位濾波前後時域差異59 5.1.2 BPW數位濾波前後時域差異60 5.1.3 PPG數位濾波前後時域差異61 5.2比較ECG、BP、PPG數位濾波前後頻域差異62 5.2.1 ECG數位濾波前後頻域差異62 5.2.2 BPW數位濾波前後頻域差異63 5.2.3 PPG數位濾波前後頻域差異64 5.3 1筆量測內BPW、PPG前後1分鐘諧波比率、變異度65 5.3.1 BPW前後1分鐘諧波比率、變異度65 5.3.2 PPG前後1分鐘諧波比率、變異度66 5.4比較4人進行5次重複再現性量測,20筆數據之探討67 5.4.1 BPW量測的再現性67 5.4.2 PPG量測的再現性69 5.4.3 ECG之R波對應BP_foot點之FDT評估71 5.4.4 ECG之R波對應PPG_foot點之FDT評估72 5.5 18人空白組初步數據之比較73 5.5.1 18人BP諧波比率、變異度之探討73 5.5.2 18人PPG諧波比率、變異度之探討74 5.5.3 18位受測者BPW、PPG諧波比率統計圖75 5.5.4 18人BPW之FDT、FDT_CV探討76 5.5.5 18人PPG之FDT、FDT_CV探討76 5.6量測操作時間77 5.6.1 BPW操作時間77 5.6.2 PPG操作時間77 第六章 結果討論與未來展望 6.1硬體研製結果討論78 6.1.1ECG硬體研究結果79 6.1.2 BPW硬體研究結果80 6.1.3 PPG硬體研究結果81 6.2軟體分析結果討論82 6.2.1 ECG、BPW、PPG數位濾波前後時域波形分析結果討論82 6.2.2 ECG、BPW、PPG數位濾波前後頻域分析結果討論82 6.2.3同筆量測內BPW、PPG前後1分鐘諧波分析結果討論83 6.2.4比較4人進行5次重複再現性量測,20筆數據分析結果討論83 6.2.5 18人空白組初步數據分析結果討論84 6.2.6參數優點84 6.3未來展望85 參考文獻86

    [1]W. h. organization. Chronic diseases and health promotion. Available:http://www.who.int/cardiovascular_diseases/resources/atlas/en/
    [2]行政院衛生福利部,"92~102年國人主要死因統計結果",2013/6/6
    [3]新華網,慢性病成為全球健康的主要威脅,取至網址:
    http://big5.xinhuanet.com/gate/big5/news.xinhuanet.com/health/2013
    [4]102年全民健康保險總額支付制度-協商參考指標要覽,取至網址
    http://www.mohw.gov.tw/MOHW_Upload/doc/102年指標要覽.pdf
    [5]黃裕斌,2014年全球智慧健康產業回顧與展望,IEK產業情報網。
    [6]微循環概略圖,取自網址:http://cht.a-hospital.com/w/生理學/微循環
    [7]W. R. Milnor., Hemodynamics,, 2nd ed ed. Baltimore: Williams & Wilkins, 1989.
    [8] W. R. Milnor., Hemodynamics, 2nd ed ed. Pulsatile Pressure and Flow:
    Navier-Stokes equation.
    [9] 王唯工(2003-a),P.36~43
    [10] 王唯工(1993-a),P.4 ~5
    [11]W. R. Milnor., Hemodynamics, 2nd ed el. Milnor et al.,1966
    [12]W. W. Nichols, "Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms," Am J Hypertens, vol. 18, pp. 3S-10S, Jan 2005.
    [13]C. T. Chen, S. M. Huang, H. Hsiu, W. C. Hsu, F. C. Lin, and H. W. Lin, "Using a blood pressure harmonic variability index to monitor the cerebral blood flow condition in stroke patients," Biorheology, vol. 48, pp. 219-28, 2011.
    [14]M. E. Safar, B. I. Levy, and H. Struijker-Boudier, "Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases," Circulation, vol. 107, pp. 2864-9, Jun 10 2003.
    [15]A. Tuttolomondo, R. Di Sciacca, D. Di Raimondo, A. Serio, G. D'Aguanno, A. Pinto, et al., "Arterial stiffness indexes in acute ischemic stroke: relationship with stroke subtype," Atherosclerosis, vol. 211, pp. 187-94, Jul 2010.

    [16]T. L. Hsu, P. T. Chao, H. Hsiu, W. K. Wang, S. P. Li, and Y. Y. Wang, "Organ-specific ligation-induced changes in harmonic components of the pulse spectrum and regional vasoconstrictor selectivity in Wistar rats," Exp Physiol, vol. 91, pp. 163-70, Jan 2006.
    [17]Y. Y. Wang, S. L. Chang, Y. E. Wu, T. L. Hsu, and W. K. Wang, "Resonance. The missing phenomenon in hemodynamics," Circ Res, vol. 69, pp. 246-9, Jul 1991.
    [18]R. L. Farrow and R. W. Stacy, "Harmonic analysis of aortic pressure pulses in the dog," Circ Res, vol. 9, pp. 395-401, Mar 1961.
    [19]S. T. Young, W. K. Wang, L. S. Chang, and T. S. Kuo, "The filter properties of the arterial beds of organs in rats," Acta Physiol Scand, vol. 145, pp. 401-6, Aug 1992.
    [20]S. T. Young, W. K. Wang, L. S. Chang, and T. S. Kuo, "Specific frequency properties of renal and superior mesenteric arterial beds in rats," Cardiovasc Res, vol. 23, pp. 465-7, Jun 1989.
    [21]W. A. Lu, C. H. Cheng, Y. Y. Lin Wang, and W. K. Wang, "Pulse spectrum analysis of hospital patients with possible liver problems," Am J Chin Med, vol. 24, pp. 315-20, 1996.
    [22]Y. Y. L. Wang, T. L. Hsu, M. Y. Jan, and W. K. Wang, "Theory and Applications of the Harmonic Analysis of Arterial Pressure Pulse Waves," Journal of Medical and Biological Engineering, vol. 30, pp. 125-131, 2010.
    [23]Caro and McDonald,1961;Patel et al.,1963;Karatzas et al.,1970;McDonald,1974.
    [24]G. E. Nilsson, T. Tenland, and P. A. Oberg, "Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow," IEEE Trans Biomed Eng, vol. 27, pp. 597-604, Oct 1980.
    [25]R. J. Jones, "Heart Disease: A Textbook of Cardiovascular Medicine," JAMA: The Journal of the American Medical Association, vol. 244, pp. 2565-2565, 1980.
    [26]H. Sato, J. Hayashi, K. Harashima, H. Shimazu, and K. Kitamoto, "A population-based study of arterial stiffness index in relation to cardiovascular risk factors," J Atheroscler Thromb, vol. 12, pp. 175-80
    [27]Thomas Weber , Johan Auer , MF. O'Rourke, Erich Kvas, Elisabetch Lassning, Robert Berent and Bernd Eber,” Arterial stiffness, Wave Reflections, and the risk of Coronary Artery Disease”, Circulation 2004;109;184-189
    [28]WW. Nichols, MF. O'Rourke, AP. Avolio , T. Yaginuma, JP. Murgo, CJ. Pepine, CR. Conti," Effects of age on ventricular-vascular coupling", pp.1179-84,1985.
    [29]J. Allen, "Photoplethysmography and its application in clinical physiological measurement," Physiological Measurement, vol. 28, pp. R1-39, Mar 2007.
    [30]Khanokh B., Slovik Y., Landau D., Nitzan M., “Sympathetically induced spon- taneous fluctuations of the photoplethysmographic signal”, Medical & Biologi- cal Engineering & Computing, 2004, vol. 42, pp.80-85.
    [31]Burton A. C., “The range and variability of the blood flow in the human fingers and the vasomotor regulation by body temperature”, American Physiological Society, 1939, vol.127, pp.473-453.
    [32]Nitzan M., Babchenko A., Shemesh D., Alberton J., “Influence of thoracic sym- pathectomy on cardiac induced oscillations in tissue blood volume”, Medical & Biological Engineering & Computing, 2001, vol. 39, pp.579-583.

    無法下載圖示 全文公開日期 2020/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE