簡易檢索 / 詳目顯示

研究生: Mayur Jiyalal Prajapati
Mayur Jiyalal Prajapati
論文名稱: 填充次級材料於閉孔超材料之多材料積層製造技術
MULTI-MATERIAL ADDITIVE MANUFACTURING OF CLOSED CELL METAMATERIALS INTEGRATED WITH SECONDARY MATERIALS
指導教授: 鄭正元
Jeng-Ywan Jeng
Ajeet Kumar
Ajeet Kumar
口試委員: 鄭逸琳
Yih-Lin Cheng
蔡榮庭
Jung-Ting Tsai
江卓培
Cho-Pei Jiang
Ajeet Kumar
羅裕龍
Yu-Lung Lo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 238
中文關鍵詞: Multi-material additive manufacturingClosed-cell lattice structureHybrid FFF processDirect Digital Manufacturing (DDM)Multifunctional properties
外文關鍵詞: Multi-material additive manufacturing, Closed-cell lattice structure, Hybrid FFF process, Direct Digital Manufacturing (DDM), Multifunctional properties
相關次數: 點閱:431下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 設計優化很容易能在自然結構中發現,而這些結構為了在惡劣的環境下生存已經持續進化了數十億年,特別的是,大自然在此惡劣環境下演變出複雜結構時,能夠有效利用材料並最大限度的減少能源消耗。自然界中的材料(例如骨骼、豪豬刺、龜殼等)為了實現不同的功能和機械性能,它們具有空間排列的複合材料。從這些材料中所獲得的靈感,可以使設計工程結構時呈現更高效的材料分布,以實現多功能特性的輕量化設計。積層製造(AM)由於其材料層層堆疊的特點,極大地促進了複雜幾何形狀的製造,使設計師能夠從自然結構中汲取靈感並模仿,輕鬆地製造出輕量化的多功能結構。
      此外,多材料的積層製造技術可更有效地控制其功能和機械性能。在眾多的積層製造技術中,材料擠製成型技術(Material Extrusion ,MEX)是最廣為使用的技術,它能夠更簡單且低成本的使用多噴嘴設置,進而實現多材料和功能分級;然而,它也面臨著許多挑戰,例如製造複雜多孔結構時需要有支撐結構,這會很大程度增加製造和後處理時間,同時,複合結構的製造不可避免地會出現界面附著不佳,導致界面分層的現象。目前,多材料積層製造(Multi-Material Additive Manufacturing, MMAM)面臨兩個主要挑戰:界面黏結和多材料3D列印系統的開發。
      本研究開發了一個新穎的多材料積層製造(Multi-Material Additive Manufacturing, MMAM)概念,其概念包含了填充次功能材料的閉孔晶格結構,此無支撐的閉孔結構可以填充次級材料,從而製造出多材料的多功能零件。為了使用積層製造技術製作出閉孔超材料,特別開發了一種"Hybrid FFF"製程,此製程同時以3D列印方式製造閉孔晶格結構並將其注入次級功能材料。Hybrid FFF技術主要在實現直接數位製造的概念,去除後處理步驟從而減少製造時間、列印成本和材料使用量。無需支撐的閉孔幾何形狀可以將次級功能材料封裝在閉孔中,而透過將次級材料封在閉孔超材料的孔隙中可以解決界面結合問題。
      將泡沫填充的閉孔超材料以TPU和PETG作為基材,並利用Hybrid FFF製程設計和製作出。對於像TPU這類的軟性材料,添加泡沫可以提高剛性和能量耗散等機械性質,並同時具有阻尼等功能。對於如PETG這類的剛性材料,添加泡沫可以減少因分層製造過程所造成的材料異向性的影響。在衝擊分析中顯示,添加泡沫可以改善各個方向上的碰撞力效率。此外,透過不同方式上對閉孔結構進行功能分級,實現了可調節和更好的機械性能。因為泡沫的膨脹程度,會限制該結構的機械性能調整範圍,因此使用了液體(矽油),並注入全部和局部的閉孔結構中,以部分填充和完全填充的方式,使次級材料能夠調整其機械性能。此具有增強和可調節之多功能性能的閉孔超材料,可應用於例如保護和運動用品、汽車和航空航天零部件等,能夠特別訂製其吸能、阻尼和碰撞效率之產品。


    Design optimization is most easily noticed in natural structures, which have evolved over billions of years to facilitate adaption under harsh environmental conditions. Mother nature uses materials efficiently and minimizes energy consumption in developing complex structures for adverse environmental conditions. Natural materials such as bones, porcupine (Erethizontidae) quills, tortoise (Testudinidae) shells, etc., contain a spatial arrangement of multi-materials to achieve diverse mechanical and functional properties. Inspiration from these natural materials can help design engineering structures with efficient material distribution to achieve multifunctional properties with lightweight design. The advent of additive manufacturing (AM) has greatly advanced the manufacturing of complex geometries due to its layer-wise material deposition process.
    Additionally, multi-material AM facilitates more significant control over the mechanical and functional properties. Amongst several AM technologies, the material extrusion (MEX) process is the most sought-after process. It can achieve multi-material and functional grading due to its simplicity, cost-effectiveness, and facilitation of various materials using multi-nozzle arrangements. However, it also poses many challenges, such as the requirement of support structures for fabricating complex cellular structures that significantly increase manufacturing and post-processing time. Also, the fabrication of composite structures inevitably comes with improper interface adhesion, leading to interface delamination. Currently, multi-material additive manufacturing (MMAM) has two major challenges a) interface bonding and b) multi-material 3D printing system development.
    This research develops a novel concept of multi-material additive manufacturing (MMAM) that involves closed-cell lattices filled with secondary functional material to counter challenges in MMAM. Closed-cell with support-free printing can be filled with secondary material to create multi-material multi-functional components. To additively manufacture closed-cell metamaterials, a ‘Hybrid FFF’ process is developed that 3D prints the closed-cell lattice structures and simultaneously impregnates them with secondary functional materials. The hybrid FFF process is aimed at the concept of direct digital manufacturing where post-process steps are removed, thereby reducing AM time, printing cost, and material usage. A supportless closed-cell geometry encapsulates the secondary functional material inside the closed cells. A filled closed-cell metamaterial can solve the interface problem by trapping the secondary material in the cellular cavity.
    Using the Hybrid FFF process, foam-filled closed-cell metamaterials were designed and additively manufactured using thermoplastic polyurethane (TPU) and (polyethylene terephthalate glycol) PETG as the base materials. In the case of soft materials such as TPU, adding foam improved mechanical properties such as stiffness and energy dissipation along with functional properties such as damping capacity. For rigid materials such as PETG, is was found that adding foam reduced the effect of directional mechanical anisotropy that results from the layer-wise deposition process. The crashworthiness analysis revealed that adding foam improves the crash force efficiency in all directions. Further, enhanced and tunable mechanical properties were achieved by functionally grading the closed cells in different ways. The expansive nature of foam limits the tunability of mechanical properties to structural modifications. Thus, liquid (Silicone oil) was impregnated into global and local closed-cell lattice structures in partial and fully filled configurations to tune the mechanical properties using secondary materials. Closed cell metamaterials with enhanced and tunable multi-functional properties can be utilized for highly customizable energy absorbing, damping, and crash force efficient applications such as protective and sporting goods, automobile and aerospace components, etc.

    Dedication iv 摘要 v ABSTRACT vii ACKNOWLEDGEMENTS ix TABLE OF CONTENTS xi LIST OF FIGURES xv LIST OF TABLES xx CHAPTER 1 1 INTRODUCTION 1 1.1 Overview 1 1.2 Motivation 4 1.3 Research Objectives 4 1.4 Thesis Outline 5 CHAPTER 2 7 LITERATURE REVIEW 7 2.1 Cellular materials 7 2.1.1 Classification of cellular materials 7 2.1.2 Properties and advantages of cellular structures 14 2.1.3 Closed cell lattice structures 18 2.2 Additive Manufacturing 18 2.2.1 VAT Photopolymerization 22 2.2.2 Powder Bed Fusion 25 2.2.3 Material Extrusion Process 27 2.2.4 Material Jetting 30 2.2.5 Binder Jetting 34 2.2.6 Sheet Lamination 37 2.2.7 Directed Energy Deposition 39 2.3 Multi-material additive manufacturing 42 2.3.1 Multi-material additive manufacturing of lattice structures 43 2.3.1.1 Discontinuous filler-reinforced multi-material lattices 44 2.3.1.2 Continuous fibre-reinforced multi-material lattices 47 2.3.1.3 Shell-core composite lattices 49 2.3.2 Multi-material additive manufacturing using MEX process 49 CHAPTER 3 55 DESIGN FOR ADDITIVE MANUFACTURING OF MULTI-MATERIAL CLOSED CELL METAMATERIALS AND HYBRID FFF PROCESS 55 3.1 Design for Materials Extrusion Process 55 3.3.1 Printing parameters 55 3.3.2 Geometrical features 57 3.2 Design for AM of closed-cell metamaterials filled with secondary materials 59 3.2.1 Design of supportless closed cell metamaterials 60 3.2.2 Design parameters for TPU based foam-filled closed cell metamaterials 61 3.2.3 Design parameters for PETG based foam-filled closed cell metamaterials 62 3.2.4 Design parameters for TPU based functionally gradient closed cell metamaterials 63 3.2.5 Design parameters for PETG based foam-filled tessellations 65 3.3 Design and construction of Hybrid Material Extrusion process 68 3.3.1 Hybrid MEX system version 1 68 3.3.2 Hybrid MEX system version 2 69 CHAPTER 4 72 MATERIALS AND METHODS 72 4.1 Materials 72 4.1.1 Thermoplastic polyurethane (TPU) 73 4.1.2 Polyethylene terephthalate glycol (PETG) 74 4.1.3 Polyurethane (PU) foam 76 4.1.4 Silicone oil 78 4.2 Finite Element Analysis 78 4.2.1 Finite element analysis of foam-filled closed cell metamaterials 79 4.2.2 Finite element analysis of liquid filled closed-cell metamaterials 80 4.3 Additive Manufacturing of closed cell metamaterials filled with secondary materials 83 4.3.1 Additive manufacturing of foam-filled closed-cell metamaterials with TPU 83 4.3.2 Additive manufacturing of foam-filled closed cell metamaterials with PETG 85 4.3.3 Additive manufacturing of foam-filled functionally graded metamaterials with TPU 87 4.3.5 Additive manufacturing of liquid filled closed-cell metamaterials using TPU 87 4.3.6 Additive manufacturing of foam-filed tessellations 90 4.4 Experimental methods and results calculations 90 4.4.1 SEM analysis 91 4.4.2 Uniaxial compression testing for TPU based foam-filled closed-cell metamaterials 91 4.4.3 Uniaxial compression testing for rigid structures 93 CHAPTER 5 94 MECHANICAL PROPERTIES OF MULTI-MATERIAL CLOSED CELL LATTICE STRUCTURES 94 5.1 Effect of foam-filling on closed-cell metamaterial 3D printed with TPU 94 5.1.1 Compression testing of lattice structures 94 5.1.2 Mechanical Properties of lattice structures 100 5.1.3 SEM Analysis 107 5.1.4 Discussions 109 5.2 Effect of foam-filling on closed-cell metamaterial 3D printed with PETG 112 5.2.1 SEM Analysis 112 5.2.2 Mechanical anisotropy and crashworthiness analysis 119 5.2.3 Finite Element Analysis 125 5.3 Effect of foam-filling on functionally gradient closed cell metamaterials 131 5.3.1 Compression testing of foam-filled functionally gradient metamaterials 131 5.3.2 SEM Analysis 136 5.4 Product development using foam-filled metamaterials 140 5.4.1 Variable strain rate compression testing of foam-filled metamaterials 140 5.4.2 Product development – Universal Puck for High-speed supply line 146 5.5 Effect of liquid filling on closed cell metamaterials 154 5.5.1 Structural behavior of unfilled, partially-filled and fully-filled closed cell metamaterials 154 5.5.2 Finite element analysis 159 5.5.3 Mechanical properties 167 5.5.4 Strategies to tune mechanical and functional properties 170 5.6 Effect of foam-filling on closed-cell tessellated metamaterials 172 5.6.1 Compression testing and mechanical properties of closed-cell non-edge-to-edge tessellated metamaterials 172 5.6.2 Compression testing and mechanical properties of closed-cell edge-to-edge tessellated metamaterials 175 CHAPTER 6 178 DESIGN AND ADDITIVE MANUFACTURING OF LIQUID FILLED CLOSED CELL DAMPERS 178 6.1 Introduction 178 6.2 Design of liquid filled closed cell dampers 179 6.2 Mechanical properties of liquid filled closed cell dampers 180 6.3 Challenges 182 CHAPTER 7 184 CONCLUSION, CHALLENGES AND FUTURE SCOPE 184 7.1 Conclusion 184 7.2 Challenges and future scope 189 REFERENCES 191 LIST OF PUBLICATIONS 215

    [1] U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen, The Role of Additive Manufacturing in the Era of Industry 4.0, Procedia Manuf. 11 (2017) 545–554. https://doi.org/10.1016/j.promfg.2017.07.148.
    [2] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, B.Y.-I. Access, undefined 2017, Smart factory of industry 4.0: Key technologies, application case, and challenges, Ieeexplore.Ieee.Org. (n.d.). https://ieeexplore.ieee.org/abstract/document/8207346/ (accessed June 7, 2023).
    [3] S. Wang, J. Wan, D. Li, C.Z.-I. journal of, undefined 2016, Implementing smart factory of industrie 4.0: an outlook, Journals.Sagepub.Com. 2016 (2016). https://doi.org/10.1155/2016/3159805.
    [4] Z. Shi, Y. Xie, W. Xue, Y. Chen, L. Fu, X. Xu, Smart factory in Industry 4.0, Syst. Res. Behav. Sci. 37 (2020) 607–617. https://doi.org/10.1002/SRES.2704.
    [5] D.G. Ahn, Direct metal additive manufacturing processes and their sustainable applications for green technology: A review, Int. J. Precis. Eng. Manuf. - Green Technol. 3 (2016) 381–395. https://doi.org/10.1007/s40684-016-0048-9.
    [6] I.A. Ferreira, J.P. Oliveira, J. Antonissen, H. Carvalho, Assessing the impact of fusion-based additive manufacturing technologies on green supply chain management performance, J. Manuf. Technol. Manag. 34 (2023) 187–211. https://doi.org/10.1108/JMTM-06-2022-0235.
    [7] D.G. Ahn, Direct metal additive manufacturing processes and their sustainable applications for green technology: A review, Int. J. Precis. Eng. Manuf. - Green Technol. 3 (2016) 381–395. https://doi.org/10.1007/s40684-016-0048-9.
    [8] D. Chen, S. Heyer, S. Ibbotson, K. Salonitis, J.G. Steingrímsson, S. Thiede, Direct digital manufacturing: Definition, evolution, and sustainability implications, J. Clean. Prod. 107 (2015) 615–625. https://doi.org/10.1016/j.jclepro.2015.05.009.
    [9] I. Gibson, D. Rosen, B. Stucker, M. Khorasani, Additive Manufacturing Technologies, Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-56127-7.
    [10] Implementing Data-Driven Manufacturing in Northeast Ohio - Smart Manufacturing Cluster of Northeast Ohio, (n.d.). https://smartmanufacturingcluster.org/resources/implementing-data-driven-manufacturing-in-northeast-ohio/ (accessed June 7, 2023).
    [11] A. du Plessis, C. Broeckhoven, I. Yadroitsava, I. Yadroitsev, C.H. Hands, R. Kunju, D. Bhate, Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing, Addit. Manuf. 27 (2019) 408–427. https://doi.org/10.1016/j.addma.2019.03.033.
    [12] L.J. Gibson, M.F. Ashby, Cellular solids: Structure and properties, second edition, Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781139878326.
    [13] O. Rehme, Cellular Design for Laser Freeform Fabrication., 2010.
    [14] V.S. Deshpande, M.F. Ashby, N.A. Fleck, Foam topology: Bending versus stretching dominated architectures, Acta Mater. 49 (2001) 1035–1040. https://doi.org/10.1016/S1359-6454(00)00379-7.
    [15] L.J. Gibson, M.F. Ashby, Cellular Solids, Cambridge University Press, 1997. https://doi.org/10.1017/CBO9781139878326.
    [16] S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Autonomic healing of polymer composites, Nature. 409 (2001) 794–797. https://doi.org/10.1038/35057232.
    [17] J. Leng, J. Wu, J. Zhang, Preparation of Thermoplastic Polyurethane Parts Reinforced with in Situ Polylactic Acid Microfibers during Fused Deposition Modeling: The Influences of Deposition-Induced Effects, Ind. Eng. Chem. Res. 58 (2019) 21476–21484. https://doi.org/10.1021/acs.iecr.9b04285.
    [18] X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, Z. Sun, 3D Printable Graphene Composite, Sci. Rep. 5 (2015). https://doi.org/10.1038/srep11181.
    [19] M. Kireitseu, D. Hui, G. Tomlinson, Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material, Compos. Part B Eng. 39 (2008) 128–138. https://doi.org/10.1016/j.compositesb.2007.03.004.
    [20] D. Bhate, C.A. Penick, L.A. Ferry, C. Lee, Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches, Des. 2019, Vol. 3, Page 19. 3 (2019) 19. https://doi.org/10.3390/DESIGNS3010019.
    [21] U. Kalsoom, A. Peristyy, P.N. Nesterenko, B. Paull, A 3D printable diamond polymer composite: A novel material for fabrication of low cost thermally conducting devices, RSC Adv. 6 (2016) 38140–38147. https://doi.org/10.1039/c6ra05261d.
    [22] B. Shen, Y. Li, H. Yan, S.K.S. Boetcher, G. Xie, Heat transfer enhancement of wedge-shaped channels by replacing pin fins with Kagome lattice structures, Int. J. Heat Mass Transf. 141 (2019) 88–101. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.06.059.
    [23] K. Saha, S. Acharya, C. Nakamata, Heat Transfer Enhancement and Thermal Performance of Lattice Structures for Internal Cooling of Airfoil Trailing Edges, J. Therm. Sci. Eng. Appl. 5 (2013). https://doi.org/10.1115/1.4007277/378944.
    [24] D. Downing, M. Leary, M. McMillan, A. Alghamdi, M. Brandt, Heat transfer in lattice structures during metal additive manufacturing: numerical exploration of temperature field evolution, Rapid Prototyp. J. 26 (2020) 911–928. https://doi.org/10.1108/RPJ-11-2018-0288/FULL/PDF.
    [25] T.A. Schaedler, W.B. Carter, Architected Cellular Materials, Annu. Rev. Mater. Res. 46 (2016) 187–210. https://doi.org/10.1146/annurev-matsci-070115-031624.
    [26] J. Plocher, A. Panesar, Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures, Mater. Des. 183 (2019). https://doi.org/10.1016/j.matdes.2019.108164.
    [27] T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, M. Brandt, SLM lattice structures: Properties, performance, applications and challenges, Mater. Des. 183 (2019) 108137. https://doi.org/10.1016/j.matdes.2019.108137.
    [28] H. Wang, D. Tan, Z. Liu, H. Yin, G. Wen, On crashworthiness of novel porous structure based on composite TPMS structures, Eng. Struct. 252 (2022) 113640. https://doi.org/10.1016/j.engstruct.2021.113640.
    [29] S. Yu, J. Sun, J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater. Des. 182 (2019). https://doi.org/10.1016/J.MATDES.2019.108021.
    [30] O. Al-Ketan, R. Rowshan, R.K. Abu Al-Rub, Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials, Addit. Manuf. 19 (2018) 167–183. https://doi.org/10.1016/j.addma.2017.12.006.
    [31] I. Maskery, L. Sturm, A.O. Aremu, A. Panesar, C.B. Williams, C.J. Tuck, R.D. Wildman, I.A. Ashcroft, R.J.M. Hague, Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing, Polymer (Guildf). 152 (2018) 62–71. https://doi.org/10.1016/j.polymer.2017.11.049.
    [32] J. Hu, A.T.L. Tan, H. Chen, X. Hu, Superior compressive properties of 3D printed plate lattice mechanical metamaterials, Int. J. Mech. Sci. 231 (2022) 107586. https://doi.org/10.1016/j.ijmecsci.2022.107586.
    [33] C. Crook, J. Bauer, A. Guell Izard, C. Santos de Oliveira, J. Martins de Souza e Silva, J.B. Berger, L. Valdevit, Plate-nanolattices at the theoretical limit of stiffness and strength, Nat. Commun. 11 (2020) 1–11. https://doi.org/10.1038/s41467-020-15434-2.
    [34] T. Tancogne-Dejean, M. Diamantopoulou, M.B. Gorji, C. Bonatti, D. Mohr, 3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness, Adv. Mater. 30 (2018) 1803334. https://doi.org/10.1002/adma.201803334.
    [35] T. Tancogne-Dejean, M. Diamantopoulou, M.B. Gorji, C. Bonatti, D. Mohr, Metamaterials: 3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness (Adv. Mater. 45/2018), Adv. Mater. 30 (2018) 1870337. https://doi.org/10.1002/ADMA.201870337.
    [36] D. Nielsen, Victoria regia’s bequest to modern architecture, WIT Trans. Ecol. Environ. 138 (2010) 65–76. https://doi.org/10.2495/DN100071.
    [37] T. McNulty, D. Bhate, A. Zhang, M.A. Kiser, L. Ferry, A. Suder, S. Bhattacharya, P. Boradkar, A framework for the design of biomimetic cellular materials for additive manufacturing, Solid Free. Fabr. 2017 Proc. 28th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2017. (2020) 2188–2200.
    [38] M.F. Ashby, The properties of foams and lattices, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364 (2006) 15–30. https://doi.org/10.1098/rsta.2005.1678.
    [39] J.C. Maxwell, L. On the calculation of the equilibrium and stiffness of frames, London, Edinburgh, Dublin Philos. Mag. J. Sci. 27 (1864) 294–299. https://doi.org/10.1080/14786446408643668.
    [40] C.R. Calladine, Buckminster Fuller’s “Tensegrity” structures and Clerk Maxwell’s rules for the construction of stiff frames, Int. J. Solids Struct. 14 (1978) 161–172. https://doi.org/10.1016/0020-7683(78)90052-5.
    [41] A. Kumar, L. Collini, A. Daurel, J.Y. Jeng, Design and additive manufacturing of closed cells from supportless lattice structure, Addit. Manuf. 33 (2020) 101168. https://doi.org/10.1016/j.addma.2020.101168.
    [42] S. Upcraft, R. Fletcher, The rapid prototyping technologies, Assem. Autom. 23 (2003) 318–330. https://doi.org/10.1108/01445150310698634.
    [43] A. Grazebrook, Rapid prototyping, Ada User. 15 (1994) 151–152. https://doi.org/10.1142/4605.
    [44] S. Upcraft, R. Fletcher, The rapid prototyping technologies, Assem. Autom. 23 (2003) 318–330. https://doi.org/10.1108/01445150310698634.
    [45] J. Kruth, M. Leu, T.N.-C. Annals, undefined 1998, Progress in additive manufacturing and rapid prototyping, Elsevier. (n.d.). https://www.sciencedirect.com/science/article/pii/S0007850607632405 (accessed June 10, 2023).
    [46] I. Campbell, D. Bourell, I. Gibson, Additive manufacturing: rapid prototyping comes of age, Rapid Prototyp. J. 18 (2012) 255–258. https://doi.org/10.1108/13552541211231563/FULL/HTML.
    [47] I. Gibson, D.W. Rosen, B. Stucker, Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing, Addit. Manuf. Technol. Rapid Prototyp. to Direct Digit. Manuf. (2010) 1–459. https://doi.org/10.1007/978-1-4419-1120-9.
    [48] B. Mueller, Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing, Assem. Autom. 32 (2012) 151–154. https://doi.org/10.1108/AA.2012.03332BAA.010/FULL/HTML.
    [49] O. Diegel, A. Nordin, D. Motte, Additive Manufacturing Technologies, 2019. https://doi.org/10.1007/978-981-13-8281-9_2.
    [50] ISO/ASTM 52900: Additive manufacturing — General principles — Fundamentals and vocabulary (second edition), (2021). https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en (accessed June 9, 2023).
    [51] Photopolymerization, What is it and how does it work? | Dassault Systèmes®, (n.d.). https://www.3ds.com/make/guide/process/photopolymerization (accessed July 5, 2023).
    [52] The Difference Between DLP And SLA 3D Printing Technology - Manufactur3D, (n.d.). https://manufactur3dmag.com/difference-dlp-sla/ (accessed July 5, 2023).
    [53] 3D printing with the Carbon 3D printer and the CLIP technology, (n.d.). https://www.sculpteo.com/en/glossary/carbon-3d-printer-and-clip-technology/ (accessed July 5, 2023).
    [54] Powder Bed Fusion, How does it work? | Dassault Systèmes®, (n.d.). https://www.3ds.com/make/guide/process/powder-bed-fusion (accessed July 5, 2023).
    [55] E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties, Prog. Mater. Sci. 74 (2015) 401–477. https://doi.org/10.1016/j.pmatsci.2015.03.002.
    [56] M. Anand, A.K. Das, Issues in fabrication of 3D components through DMLS Technique: A review, Opt. Laser Technol. 139 (2021) 106914. https://doi.org/10.1016/j.optlastec.2021.106914.
    [57] L.C. Zhang, Y. Liu, S. Li, Y. Hao, Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review, Adv. Eng. Mater. 20 (2018) 1700842. https://doi.org/10.1002/adem.201700842.
    [58] 3D Printing, What is it and how does it work? | Dassault Systèmes®, (n.d.). https://www.3ds.com/make/guide/process/3d-printing# (accessed July 5, 2023).
    [59] R.T.L. Ferreira, I.C. Amatte, T.A. Dutra, D. Bürger, Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers, Compos. Part B Eng. 124 (2017) 88–100. https://doi.org/10.1016/J.COMPOSITESB.2017.05.013.
    [60] Markforged | Home Page, (n.d.). https://markforged.com/zh/ (accessed June 12, 2023).
    [61] H. Wu, W.P. Fahy, S. Kim, H. Kim, N. Zhao, L. Pilato, A. Kafi, S. Bateman, J.H. Koo, Recent developments in polymers/polymer nanocomposites for additive manufacturing, Prog. Mater. Sci. 111 (2020) 100638. https://doi.org/10.1016/j.pmatsci.2020.100638.
    [62] D. Yang, K. Wu, L. Wan, Y. Sheng, A Particle Element Approach for Modelling the 3D Printing Process of Fibre Reinforced Polymer Composites, J. Manuf. Mater. Process. 2017, Vol. 1, Page 10. 1 (2017) 10. https://doi.org/10.3390/JMMP1010010.
    [63] H. Wu, W.P. Fahy, S. Kim, H. Kim, N. Zhao, L. Pilato, A. Kafi, S. Bateman, J.H. Koo, Recent developments in polymers/polymer nanocomposites for additive manufacturing, Prog. Mater. Sci. 111 (2020). https://doi.org/10.1016/j.pmatsci.2020.100638.
    [64] A. Kumar, S. Verma, J.Y. Jeng, Supportless lattice structures for energy absorption fabricated by fused deposition modeling, 3D Print. Addit. Manuf. 7 (2020) 85–96. https://doi.org/10.1089/3dp.2019.0089.
    [65] Material Jetting ( MJ ), (2019) 1–3. https://make.3dexperience.3ds.com/processes/material-jetting (accessed July 5, 2023).
    [66] A. Elkaseer, K.J. Chen, J.C. Janhsen, O. Refle, V. Hagenmeyer, S.G. Scholz, Material jetting for advanced applications: A state-of-the-art review, gaps and future directions, Addit. Manuf. 60 (2022) 103270. https://doi.org/10.1016/j.addma.2022.103270.
    [67] P. Patpatiya, K. Chaudhary, A. Shastri, S. Sharma, A review on polyjet 3D printing of polymers and multi-material structures, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 236 (2022) 7899–7926. https://doi.org/10.1177/09544062221079506.
    [68] E. Sweet, R. Mehta, Y. Xu, R. Jew, R. Lin, L. Lin, Finger-powered fluidic actuation and mixing: Via MultiJet 3D printing, Lab Chip. 20 (2020) 3375–3385. https://doi.org/10.1039/d0lc00488j.
    [69] Y. Oh, V. Bharambe, B. Mummareddy, J. Martin, J. McKnight, M.A. Abraham, J.M. Walker, K. Rogers, B. Conner, P. Cortes, E. MacDonald, J.J. Adams, Microwave dielectric properties of zirconia fabricated using NanoParticle JettingTM, Addit. Manuf. 27 (2019) 586–594. https://doi.org/10.1016/J.ADDMA.2019.04.005.
    [70] Binder Jetting, What is it and how does it work? | Dassault Systèmes®, (n.d.). https://www.3ds.com/make/guide/process/binder-jetting (accessed July 5, 2023).
    [71] HP Multi Jet Fusion 3D Printing Technology | HP® Official Site, (n.d.). https://www.hp.com/us-en/printers/3d-printers/products/multi-jet-technology.html (accessed July 5, 2023).
    [72] What is Single Pass JettingTM? | Desktop Metal, (n.d.). https://www.desktopmetal.com/resources/what-is-single-pass-jetting (accessed July 5, 2023).
    [73] W. Du, X. Ren, Z. Pei, C. Ma, Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density, J. Manuf. Sci. Eng. Trans. ASME. 142 (2020). https://doi.org/10.1115/1.4046248.
    [74] M. Li, W. Du, A. Elwany, Z. Pei, C. Ma, Metal binder jetting additive manufacturing: A literature review, J. Manuf. Sci. Eng. Trans. ASME. 142 (2020). https://doi.org/10.1115/1.4047430.
    [75] AMRG, Sheet Lamination | Additive Manufacturing Research Group | Loughborough University, (n.d.). https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/sheetlamination/ (accessed July 5, 2023).
    [76] D. Kumar, M. Chanan, S. Syan, I. Conference, CAD / CAM , Robotics and Factories of the Future, 2016.
    [77] A. Hehr, M. Norfolk, A comprehensive review of ultrasonic additive manufacturing, Rapid Prototyp. J. 26 (2020) 445–458. https://doi.org/10.1108/RPJ-03-2019-0056.
    [78] Directed Energy Deposition, What is it and how does it work? | Dassault Systèmes®, (n.d.). https://www.3ds.com/make/guide/process/directed-energy-deposition (accessed July 5, 2023).
    [79] Directed Energy Deposition | Additive Manufacturing Research Group | Loughborough University, (n.d.). https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/directedenergydeposition/ (accessed July 5, 2023).
    [80] C. Atwood, M. Griffith, L. Harwell, E. Schlienger, M. Ensz, J. Smugeresky, T. Romero, D. Greene, D. Reckaway, Laser engineered net shaping (LENSTM): A tool for direct fabrication of metal parts, in: AIP Publishing, 2018: pp. E1–E7. https://doi.org/10.2351/1.5059147.
    [81] X. Gong, T. Anderson, K. Chou, Review on powder-based electron beam additive manufacturing Technology, Manuf. Rev. 1 (2014) 2. https://doi.org/10.1051/mfreview/2014001.
    [82] K.S. Derekar, A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium, Mater. Sci. Technol. (United Kingdom). 34 (2018) 895–916. https://doi.org/10.1080/02670836.2018.1455012.
    [83] R. Rumman, D.A. Lewis, J.Y. Hascoet, J.S. Quinton, Laser metal deposition and wire arc additive manufacturing of materials: An overview, Arch. Metall. Mater. 64 (2019) 467–473. https://doi.org/10.24425/amm.2019.127561.
    [84] O. Diegel, A. Nordin, D. Motte, A Practical Guide to Design for Additive Manufacturing, 2019. https://doi.org/10.1007/978-981-13-8281-9_2.
    [85] F. Libonati, G.X. Gu, Z. Qin, L. Vergani, M.J. Buehler, Bone-Inspired Materials by Design: Toughness Amplification Observed Using 3D Printing and Testing, Adv. Eng. Mater. 18 (2016) 1354–1363. https://doi.org/10.1002/adem.201600143.
    [86] O. Al-Ketan, A. Soliman, A.M. AlQubaisi, R.K. Abu Al-Rub, Nature-Inspired Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal Structures, Adv. Eng. Mater. 20 (2018) 1700549. https://doi.org/10.1002/adem.201700549.
    [87] G. Kickelbick, Introduction to Hybrid Materials, Hybrid Mater. Synth. Charact. Appl. (2007) 1–48. https://doi.org/10.1002/9783527610495.ch1.
    [88] T.T. Li, Y.C. Chuang, C.H. Huang, C.W. Lou, J.H. Lin, Applying vermiculite and perlite fillers to sound-absorbing/thermal-insulating resilient PU foam composites, Fibers Polym. 16 (2015) 691–698. https://doi.org/10.1007/s12221-015-0691-8.
    [89] J.H. Mallinson, Corrosion-Resistant Plastic Composites in Chemical Plant Design, 2020. https://doi.org/10.1201/9781003065722.
    [90] S. Christ, M. Schnabel, E. Vorndran, J. Groll, U. Gbureck, Fiber reinforcement during 3D printing, Mater. Lett. 139 (2015) 165–168. https://doi.org/10.1016/j.matlet.2014.10.065.
    [91] J. Chen, H. Fang, W. Liu, L. Zhu, Y. Zhuang, J. Wang, J. Han, Energy absorption of foam-filled multi-cell composite panels under quasi-static compression, Compos. Part B Eng. 153 (2018) 295–305. https://doi.org/10.1016/J.COMPOSITESB.2018.08.122.
    [92] S. Singh, S. Ramakrishna, F. Berto, 3D Printing of polymer composites: A short review, Mater. Des. Process. Commun. 2 (2020) 1–13. https://doi.org/10.1002/mdp2.97.
    [93] Z. Quan, A. Wu, M. Keefe, X. Qin, J. Yu, J. Suhr, J.H. Byun, B.S. Kim, T.W. Chou, Additive manufacturing of multi-directional preforms for composites: Opportunities and challenges, Mater. Today. 18 (2015) 503–512. https://doi.org/10.1016/j.mattod.2015.05.001.
    [94] J. Mueller, J.R. Raney, K. Shea, J.A. Lewis, Architected Lattices with High Stiffness and Toughness via Multicore–Shell 3D Printing, Adv. Mater. 30 (2018). https://doi.org/10.1002/adma.201705001.
    [95] H. Yin, W. Zhang, L. Zhu, F. Meng, J. Liu, G. Wen, Review on lattice structures for energy absorption properties, Compos. Struct. 304 (2023). https://doi.org/10.1016/j.compstruct.2022.116397.
    [96] T.A. Schaedler, W.B. Carter, Architected Cellular Materials, Annu. Rev. Mater. Res. 46 (2016) 187–210. https://doi.org/10.1146/annurev-matsci-070115-031624.
    [97] A.R. Garcia-Taormina, A. Alwen, R. Schwaiger, A.M. Hodge, A review of coated nano- and micro-lattice materials, J. Mater. Res. 36 (2021) 3607–3627. https://doi.org/10.1557/S43578-021-00178-6.
    [98] R.F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures, Compos. Struct. 92 (2010) 2793–2810. https://doi.org/10.1016/J.COMPSTRUCT.2010.05.003.
    [99] C.J. Hunt, F. Morabito, C. Grace, Y. Zhao, B.K.S. Woods, A review of composite lattice structures, Compos. Struct. 284 (2022). https://doi.org/10.1016/j.compstruct.2021.115120.
    [100] E. Estakhrianhaghighi, A. Mirabolghasemi, Y. Zhang, L. Lessard, A. Akbarzadeh, 3D‐printed wood‐fiber reinforced architected cellular composites, Wiley Online Libr. 22 (2020). https://doi.org/10.1002/adem.202000565.
    [101] H. Jiang, L. Le Barbenchon, B.A. Bednarcyk, F. Scarpa, Y. Chen, Bioinspired multilayered cellular composites with enhanced energy absorption and shape recovery, Addit. Manuf. 36 (2020) 101430. https://doi.org/10.1016/j.addma.2020.101430.
    [102] K.J. Narayana, R. Gupta Burela, A review of recent research on multifunctional composite materials and structures with their applications, in: Mater. Today Proc., 2018: pp. 5580–5590. https://doi.org/10.1016/j.matpr.2017.12.149.
    [103] S. Yuan, C.K. Chua, K. Zhou, 3D-Printed Mechanical Metamaterials with High Energy Absorption, Adv. Mater. Technol. 4 (2019). https://doi.org/10.1002/admt.201800419.
    [104] O. Al-Ketan, A. Soliman, A.M. AlQubaisi, R.K. Abu Al-Rub, Nature-Inspired Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal Structures, Adv. Eng. Mater. 20 (2018). https://doi.org/10.1002/adem.201700549.
    [105] R. Tao, L. Xi, W. Wu, Y. Li, B. Liao, L. Liu, J. Leng, D. Fang, 4D printed multi-stable metamaterials with mechanically tunable performance, Compos. Struct. 252 (2020). https://doi.org/10.1016/j.compstruct.2020.112663.
    [106] J.J. Andrew, H. Alhashmi, A. Schiffer, S. Kumar, V.S. Deshpande, Energy absorption and self-sensing performance of 3D printed CF/PEEK cellular composites, Mater. Des. 208 (2021). https://doi.org/10.1016/j.matdes.2021.109863.
    [107] S.M.F. Kabir, K. Mathur, A.F.M. Seyam, A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties, Compos. Struct. 232 (2020). https://doi.org/10.1016/j.compstruct.2019.111476.
    [108] K. Markandan, C.Q. Lai, Enhanced mechanical properties of 3D printed graphene-polymer composite lattices at very low graphene concentrations, Compos. Part A Appl. Sci. Manuf. 129 (2020). https://doi.org/10.1016/j.compositesa.2019.105726.
    [109] A. Al Rashid, W. Ahmed, M.Y. Khalid, M. Koç, Vat photopolymerization of polymers and polymer composites: Processes and applications, Addit. Manuf. 47 (2021). https://doi.org/10.1016/j.addma.2021.102279.
    [110] A.M. Vilardell, I. Yadroitsava, W.K.C. Wolf, A. Du Plessis, M. Tshibalanganda, D.P. Kouprianoff, N. Garcia-Giralt, M. Kobashi, I. Yadroitsev, Laser powder bed fusion of polyamide-composite for antibacterial applications: Characterization and properties, Mater. Today Commun. 31 (2022). https://doi.org/10.1016/j.mtcomm.2022.103727.
    [111] J. Li, Y. Durandet, X. Huang, G. Sun, D. Ruan, Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities, J. Mater. Sci. Technol. 119 (2022) 219–244. https://doi.org/10.1016/j.jmst.2021.11.063.
    [112] G.D. Goh, Y.L. Yap, S. Agarwala, W.Y. Yeong, Recent Progress in Additive Manufacturing of Fiber Reinforced Polymer Composite, Adv. Mater. Technol. 4 (2019). https://doi.org/10.1002/admt.201800271.
    [113] B.G. Compton, B.K. Post, C.E. Duty, L. Love, V. Kunc, Thermal analysis of additive manufacturing of large-scale thermoplastic polymer composites, Addit. Manuf. 17 (2017) 77–86. https://doi.org/10.1016/j.addma.2017.07.006.
    [114] C. Yang, X. Tian, T. Liu, Y. Cao, D. Li, 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance, Rapid Prototyp. J. 23 (2017) 209–215. https://doi.org/10.1108/RPJ-08-2015-0098.
    [115] Z. Liu, Y. Wang, B. Wu, C. Cui, Y. Guo, C. Yan, A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts, Int. J. Adv. Manuf. Technol. 102 (2019) 2877–2889. https://doi.org/10.1007/s00170-019-03332-x.
    [116] W. Hao, Y. Liu, T. Wang, G. Guo, H. Chen, D. Fang, Failure analysis of 3D printed glass fiber/PA12 composite lattice structures using DIC, Compos. Struct. 225 (2019) 111192. https://doi.org/10.1016/j.compstruct.2019.111192.
    [117] H. Mei, W. Huang, Y. Zhao, L. Cheng, Strengthening three-dimensional printed ultra-light ceramic lattices, J. Am. Ceram. Soc. 102 (2019) 5082–5089. https://doi.org/10.1111/jace.16403.
    [118] C.Q. Lai, K. Markandan, B. Luo, Y.C. Lam, W.C. Chung, A. Chidambaram, Viscoelastic and high strain rate response of anisotropic graphene-polymer nanocomposites fabricated with stereolithographic 3D printing, Addit. Manuf. 37 (2021). https://doi.org/10.1016/j.addma.2020.101721.
    [119] Y. Tao, L. Pan, D. Liu, P. Li, A case study: Mechanical modeling optimization of cellular structure fabricated using wood flour-filled polylactic acid composites with fused deposition modeling, Compos. Struct. 216 (2019) 360–365. https://doi.org/10.1016/j.compstruct.2019.03.010.
    [120] M. Nachtane, M. Tarfaoui, Y. Ledoux, S. Khammassi, E. Leneveu, J. Pelleter, Experimental investigation on the dynamic behavior of 3D printed CF-PEKK composite under cyclic uniaxial compression, Compos. Struct. 247 (2020). https://doi.org/10.1016/j.compstruct.2020.112474.
    [121] J. Plocher, A. Panesar, Mechanical Performance of Additively Manufactured Fiber-Reinforced Functionally Graded Lattices, JOM. 72 (2020) 1292–1298. https://doi.org/10.1007/s11837-019-03961-3.
    [122] J. Plocher, J.B. Wioland, A.S. Panesar, Additive manufacturing with fibre-reinforcement – design guidelines and investigation into the influence of infill patterns, Rapid Prototyp. J. 28 (2022) 1241–1259. https://doi.org/10.1108/RPJ-09-2021-0223/FULL/HTML.
    [123] R. Rahmani, M. Brojan, M. Antonov, K.G. Prashanth, Perspectives of metal-diamond composites additive manufacturing using SLM-SPS and other techniques for increased wear-impact resistance, Int. J. Refract. Met. Hard Mater. 88 (2020). https://doi.org/10.1016/j.ijrmhm.2020.105192.
    [124] C. Oztan, R. Karkkainen, M. Fittipaldi, G. Nygren, L. Roberson, M. Lane, E. Celik, Microstructure and mechanical properties of three dimensional-printed continuous fiber composites, J. Compos. Mater. 53 (2019) 271–280. https://doi.org/10.1177/0021998318781938.
    [125] E. Yasa, K. Ersoy, A review on the additive manufacturing of fiber reinforced polymer matrix composites, in: Solid Free. Fabr. 2018 Proc. 29th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2018, 2020: pp. 1024–1033. https://repositories.lib.utexas.edu/handle/2152/90183 (accessed June 12, 2023).
    [126] X. Tian, T. Liu, Q. Wang, Manufacturing and recycling of 3D printed continuous carbon fiber reinforced pla composites, in: ICCM Int. Conf. Compos. Mater., 2017. https://www.sciencedirect.com/science/article/pii/S0959652616320017?casa_token=YGMOYPsaByoAAAAA:-_39S8NEdOrvWf8882xGupfEC6fT4fhyn-r9EMsdAKRSXk_Fhs2Go4q7s_yHqeLt1_0Cf-GUetLh (accessed June 12, 2023).
    [127] F. Safari, A. Kami, V.A.-P. and Polymer, undefined 2022, 3D printing of continuous fiber reinforced composites: A review of the processing, pre-and post-processing effects on mechanical properties, Journals.Sagepub.Com. 30 (2019) 1–26. https://doi.org/10.1177/09673911221098734.
    [128] C. Zeng, L. Liu, W. Bian, J. Leng, Y. Liu, Bending performance and failure behavior of 3D printed continuous fiber reinforced composite corrugated sandwich structures with shape memory capability, Compos. Struct. 262 (2021). https://doi.org/10.1016/j.compstruct.2021.113626.
    [129] C. Zeng, L. Liu, W. Bian, J. Leng, Y. Liu, Compression behavior and energy absorption of 3D printed continuous fiber reinforced composite honeycomb structures with shape memory effects, Addit. Manuf. 38 (2021). https://doi.org/10.1016/j.addma.2021.101842.
    [130] C. Zeng, L. Liu, W. Bian, J. Leng, Y. Liu, Temperature-dependent mechanical response of 4D printed composite lattice structures reinforced by continuous fiber, Compos. Struct. 280 (2022). https://doi.org/10.1016/j.compstruct.2021.114952.
    [131] S.M.F. Kabir, K. Mathur, A.F.M. Seyam, Impact resistance and failure mechanism of 3D printed continuous fiber-reinforced cellular composites, J. Text. Inst. 112 (2021) 752–766. https://doi.org/10.1080/00405000.2020.1778223.
    [132] K. Mathur, S.M.F. Kabir, A.F.M. Seyam, Tensile properties of 3D printed continuous fiberglass reinforced cellular composites, J. Text. Inst. 113 (2022) 60–69. https://doi.org/10.1080/00405000.2020.1863567.
    [133] Z. Wang, C. Luan, G. Liao, X. Yao, J. Fu, Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure, Compos. Part B Eng. 176 (2019). https://doi.org/10.1016/j.compositesb.2019.107215.
    [134] Z. Hou, X. Tian, J. Zhang, D. Li, 3D printed continuous fibre reinforced composite corrugated structure, Compos. Struct. 184 (2018) 1005–1010. https://doi.org/10.1016/j.compstruct.2017.10.080.
    [135] C. Quan, B. Han, Z. Hou, Q. Zhang, X. Tian, T.J. Lu, 3d printed continuous fiber reinforced composite auxetic honeycomb structures, Compos. Part B Eng. 187 (2020). https://doi.org/10.1016/j.compositesb.2020.107858.
    [136] Z. Cui, X. Huang, M. Jia, M. Panahi-Sarmad, M.I. Hossen, K. Dong, X. Xiao, 3D printing of continuous fiber reinforced cellular structural composites for the study of bending performance, J. Reinf. Plast. Compos. (2022). https://doi.org/10.1177/07316844221137017.
    [137] J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, O. Kraft, High-strength cellular ceramic composites with 3D microarchitecture, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 2453–2458. https://doi.org/10.1073/PNAS.1315147111.
    [138] A. Schroer, J. Wheeler, R.S.-J. of M. Research, undefined 2018, Deformation behavior and energy absorption capability of polymer and ceramic-polymer composite microlattices under cyclic loading, Cambridge.Org. (2017). https://doi.org/10.1557/jmr.2017.485.
    [139] J. Bauer, A. Schroer, R. Schwaiger, I. Tesari, C. Lange, L. Valdevit, O. Kraft, Push-to-pull tensile testing of ultra-strong nanoscale ceramic-polymer composites made by additive manufacturing, Extrem. Mech. Lett. 3 (2015) 105–112. https://doi.org/10.1016/j.eml.2015.03.006.
    [140] M. Mieszala, M. Hasegawa, G. Guillonneau, J. Bauer, R. Raghavan, C. Frantz, O. Kraft, S. Mischler, J. Michler, L. Philippe, Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability, Small. 13 (2017). https://doi.org/10.1002/smll.201602514.
    [141] A. Schroer, J.M. Wheeler, R. Schwaiger, Deformation behavior and energy absorption capability of polymer and ceramic-polymer composite microlattices under cyclic loading, J. Mater. Res. 33 (2018) 274–289. https://doi.org/10.1557/jmr.2017.485.
    [142] M. Diamantopoulou, C.C. Roth, T. Tancogne-Dejean, C.M. Lauener, D. Mohr, Ceramic/polymer microlattices: Increasing specific energy absorption through sandwich construction, Extrem. Mech. Lett. 53 (2022). https://doi.org/10.1016/j.eml.2022.101708.
    [143] F. Holness, A.P.-S.M. and Structures, undefined 2017, Direct ink writing of 3D conductive polyaniline structures and rheological modelling, Iopscience.Iop.Org. 27 (2017). https://doi.org/10.1088/1361-665X/aa981c.
    [144] P. Wang, J. Li, G. Wang, L. He, Y. Yu, B. Xu, Multimaterial Additive Manufacturing of LTCC Matrix and Silver Conductors for 3D Ceramic Electronics, Adv. Mater. Technol. 7 (2022). https://doi.org/10.1002/admt.202101462.
    [145] C. Xu, B. Quinn, L.L. Lebel, D. Therriault, G. L’espérance, Multi-Material Direct Ink Writing (DIW) for Complex 3D Metallic Structures with Removable Supports, ACS Appl. Mater. Interfaces. 11 (2019) 8499–8506. https://doi.org/10.1021/acsami.8b19986.
    [146] Z. Li, Y. Li, B. Shi, D. Tang, Y. Wang, L. Hao, Dual gradient direct ink writing of functional geopolymer-based carbonyl-iron/graphene composites for adjustable broadband microwave absorption, Ceram. Int. 48 (2022) 9277–9285. https://doi.org/10.1016/J.CERAMINT.2021.12.114.
    [147] B. Luo, Y. Wei, H. Chen, Z. Zhu, P. Fan, X. Xu, B. Xie, Printing carbon nanotube-embedded silicone elastomers via direct writing, ACS Publ. 10 (2018) 44796–44802. https://doi.org/10.1021/acsami.8b18614.
    [148] M. Cheng, A. Ramasubramanian, M.G. Rasul, Y. Jiang, Y. Yuan, T. Foroozan, R. Deivanayagam, M. Tamadoni Saray, R. Rojaee, B. Song, V.R. Yurkiv, Y. Pan, F. Mashayek, R. Shahbazian-Yassar, Direct Ink Writing of Polymer Composite Electrolytes with Enhanced Thermal Conductivities, Adv. Funct. Mater. 31 (2021). https://doi.org/10.1002/ADFM.202006683.
    [149] R. Tu, H.A. Sodano, Additive manufacturing of high-performance vinyl ester resin via direct ink writing with UV-thermal dual curing, Addit. Manuf. 46 (2021). https://doi.org/10.1016/J.ADDMA.2021.102180.
    [150] J.L.-A.F. Materials, undefined 2006, Direct ink writing of 3D functional materials, Wiley Online Libr. 16 (2006) 2193–2204. https://doi.org/10.1002/adfm.200600434.
    [151] S.R. Ahammed, A.S. Praveen, Optimization parameters effects on electrical conductivity of 3D printed circuits fabricated by direct ink writing method using functionalized multiwalled carbon nanotubes and polyvinyl alcohol conductive ink, Int. J. Simul. Multidiscip. Des. Optim. 12 (2021). https://doi.org/10.1051/SMDO/2021007.
    [152] E. Udofia, W.Z.-2018 I.S. Freeform, undefined 2018, Microextrusion based 3D printing–a review, Repositories.Lib.Utexas.Edu. (n.d.). https://repositories.lib.utexas.edu/handle/2152/90280 (accessed June 12, 2023).
    [153] M. Xu, J.A. Lewis, Phase behavior and rheological properties of polyamine-rich complexes for direct-write assembly, Langmuir. 23 (2007) 12752–12759. https://doi.org/10.1021/LA702249U.
    [154] K. Sun, T.S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon, J.A. Lewis, 3D printing of interdigitated Li-ion microbattery architectures, Adv. Mater. 25 (2013) 4539–4543. https://doi.org/10.1002/adma.201301036.
    [155] L. Li, Q. Lin, M. Tang, A.J.E. Duncan, C. Ke, Advanced Polymer Designs for Direct-Ink-Write 3D Printing, Chem. - A Eur. J. 25 (2019) 10768–10781. https://doi.org/10.1002/chem.201900975.
    [156] A.M. Golobic, M.D. Durban, S.E. Fisher, M.D. Grapes, J.M. Ortega, C.M. Spadaccini, E.B. Duoss, A.E. Gash, K.T. Sullivan, Active Mixing of Reactive Materials for 3D Printing, Adv. Eng. Mater. 21 (2019). https://doi.org/10.1002/ADEM.201900147.
    [157] T.J. Ober, D. Foresti, J.A. Lewis, Active mixing of complex fluids at the microscale, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 12293–12298. https://doi.org/10.1073/PNAS.1509224112.
    [158] J. Mueller, J.R. Raney, K. Shea, J.A. Lewis, Architected Lattices with High Stiffness and Toughness via Multicore–Shell 3D Printing, Adv. Mater. 30 (2018). https://doi.org/10.1002/adma.201705001.
    [159] R.C. Pack, S.K. Romberg, A.A. Badran, N.S. Hmeidat, T. Yount, B.G. Compton, Carbon Fiber and Syntactic Foam Hybrid Materials via Core–Shell Material Extrusion Additive Manufacturing, Adv. Mater. Technol. 5 (2020). https://doi.org/10.1002/admt.202000731.
    [160] K. Chen, L. Zhang, X. Kuang, V. Li, M. Lei, G. Kang, Z.L. Wang, H.J. Qi, Dynamic Photomask-Assisted Direct Ink Writing Multimaterial for Multilevel Triboelectric Nanogenerator, Adv. Funct. Mater. 29 (2019). https://doi.org/10.1002/adfm.201903568.
    [161] S. Kim, J. Oh, D. Jeong, W. Park, J. Bae, Consistent and Reproducible Direct Ink Writing of Eutectic Gallium-Indium for High-Quality Soft Sensors, Soft Robot. 5 (2018) 601–612. https://doi.org/10.1089/soro.2017.0103.
    [162] B. Chen, Y. Jiang, X. Tang, Y. Pan, S. Hu, Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates, ACS Appl. Mater. Interfaces. 9 (2017) 28433–28440. https://doi.org/10.1021/acsami.7b06804.
    [163] S.H. Park, R. Su, J. Jeong, S.Z. Guo, K. Qiu, D. Joung, F. Meng, M.C. McAlpine, 3D Printed Polymer Photodetectors, Adv. Mater. 30 (2018). https://doi.org/10.1002/adma.201803980.
    [164] J. Hinton, M. Mirgkizoudi, A. Campos-Zatarain, D. Flynn, R.A. Harris, R.W. Kay, Digitally-driven hybrid manufacture of ceramic thick-film substrates, Ieeexplore.Ieee.Org. (n.d.). https://doi.org/10.1109/ESTC.2018.8546442.
    [165] N. Sears, P. Dhavalikar, M. Whitely, E. Cosgriff-Hernandez, Fabrication of biomimetic bone grafts with multi-material 3D printing, Biofabrication. 9 (2017). https://doi.org/10.1088/1758-5090/aa7077.
    [166] N. Betancourt, X. Chen, Review of extrusion-based multi-material bioprinting processes, Bioprinting. 25 (2022). https://doi.org/10.1016/J.BPRINT.2021.E00189.
    [167] T. Poltue, C. Karuna, S. Khrueaduangkham, S. Seehanam, P. Promoppatum, Design exploration of 3D-printed triply periodic minimal surface scaffolds for bone implants, Int. J. Mech. Sci. 211 (2021). https://doi.org/10.1016/J.IJMECSCI.2021.106762.
    [168] J.O. Hardin, T.J. Ober, A.D. Valentine, J.A. Lewis, Microfluidic printheads for multimaterial 3D printing of viscoelastic inks, Adv. Mater. 27 (2015) 3279–3284. https://doi.org/10.1002/adma.201500222.
    [169] M.A. Skylar-Scott, J. Mueller, C.W. Visser, J.A. Lewis, Voxelated soft matter via multimaterial multinozzle 3D printing, Nature. 575 (2019) 330–335. https://doi.org/10.1038/s41586-019-1736-8.
    [170] D. Kokkinis, F. Bouville, A.R. Studart, 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients, Adv. Mater. 30 (2018) 1705808. https://doi.org/10.1002/adma.201705808.
    [171] S. Zheng, M. Zlatin, P.R. Selvaganapathy, M.A. Brook, Multiple modulus silicone elastomers using 3D extrusion printing of low viscosity inks, Addit. Manuf. 24 (2018) 86–92. https://doi.org/10.1016/j.addma.2018.09.011.
    [172] L. Li, Q. Lin, M. Tang, A.J.E. Duncan, C. Ke, Advanced Polymer Designs for Direct-Ink-Write 3D Printing, Chem. - A Eur. J. 25 (2019) 10768–10781. https://doi.org/10.1002/CHEM.201900975.
    [173] T.J. Ober, D. Foresti, J.A. Lewis, Active mixing of complex fluids at the microscale, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 12293–12298. https://doi.org/10.1073/pnas.1509224112.
    [174] S. Hwang, E.I. Reyes, K. sik Moon, R.C. Rumpf, N.S. Kim, Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process, J. Electron. Mater. 44 (2015) 771–777. https://doi.org/10.1007/s11664-014-3425-6.
    [175] M.A. Ryder, D.A. Lados, G.S. Iannacchione, A.M. Peterson, Fabrication and properties of novel polymer-metal composites using fused deposition modeling, Compos. Sci. Technol. 158 (2018) 43–50. https://doi.org/10.1016/j.compscitech.2018.01.049.
    [176] F. Castles, D. Isakov, A. Lui, Q. Lei, C.E.J. Dancer, Y. Wang, J.M. Janurudin, S.C. Speller, C.R.M. Grovenor, P.S. Grant, Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites, Sci. Rep. 6 (2016). https://doi.org/10.1038/srep22714.
    [177] Y. Wu, D. Isakov, P.S. Grant, Fabrication of composite filaments with high dielectric permittivity for fused deposition 3D printing, Materials (Basel). 10 (2017). https://doi.org/10.3390/ma10101218.
    [178] P. Wang, B. Zou, S. Ding, C. Huang, Z. Shi, Y. Ma, P. Yao, Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing, Compos. Part B Eng. 198 (2020). https://doi.org/10.1016/j.compositesb.2020.108175.
    [179] T. Distler, N. Fournier, A. Grünewald, C. Polley, H. Seitz, R. Detsch, A.R. Boccaccini, Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization, Front. Bioeng. Biotechnol. 8 (2020). https://doi.org/10.3389/FBIOE.2020.00552/FULL.
    [180] O. Mohamed, S. Masood, J.B.-A. in manufacturing, undefined 2015, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Springer. 3 (2015) 42–53. https://doi.org/10.1007/s40436-014-0097-7.
    [181] C. Parulski, O. Jennotte, A. Lechanteur, B. Evrard, Challenges of fused deposition modeling 3D printing in pharmaceutical applications: Where are we now?, Adv. Drug Deliv. Rev. 175 (2021). https://doi.org/10.1016/J.ADDR.2021.05.020.
    [182] D. Han, H. Lee, Recent advances in multi-material additive manufacturing: methods and applications, Curr. Opin. Chem. Eng. 28 (2020) 158–166. https://doi.org/10.1016/J.COCHE.2020.03.004.
    [183] J. Abel, U. Scheithauer, T. Janics, S. Hampel, S. Cano, A. Müller-Köhn, A. Günther, C. Kukla, T. Moritz, Fused filament fabrication (FFF) of metal-ceramic components, Academia.Edu. 2019 (2019) 57693. https://doi.org/10.3791/57693.
    [184] Ultimaker Support, Support settings, (2022). https://support.makerbot.com/s/article/1667417606331 (accessed May 19, 2023).
    [185] J. O´Connell, 3D Printing Infill: The Basics for Optimal Results, ALL3DP. (2022). https://all3dp.com/2/infill-3d-printing-what-it-means-and-how-to-use-it/ (accessed May 19, 2023).
    [186] J.Y. Jeng, A. Kumar., Shoe midsole structure and method for manufacturing same, U.S. Patent Application No. 10,881,167.5 Jan. 2021, n.d.
    [187] J.-Y. Kumar, Ajeet; Verma, Saurav; Jeng, Supportless Latttice Structures for Energy Absorption Fabricated by Fused Deposition Modeling, (2019).
    [188] A. Kumar, J.Y. Jeng, Y.-P. Yeh, Bio-mimicked three-dimensional laminated structure, US20210186152A1, 2021.
    [189] A. Kumar, S. Verma, J. Jeng, Support-less Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling, 3D Print. Addit. Manuf. (2020). https://doi.org/10.1089/3dp.2019.0089.
    [190] C. Bhat, A. Kumar, J.-Y. Jeng, Effect of Atomic Tessellations on Structural and Functional Properties of Additive Manufactured Lattice Structures, Addit. Manuf. 47 (2021) 102326. https://doi.org/10.1016/j.addma.2021.102326.
    [191] C. Bhat, A. Kumar, S.C. Lin, J.Y. Jeng, A novel bioinspired architectured materials with interlocking designs based on tessellation, Addit. Manuf. 58 (2022) 103052. https://doi.org/10.1016/j.addma.2022.103052.
    [192] ToolChanger – E3D, (n.d.). https://e3d-online.com/pages/toolchanger (accessed March 28, 2023).
    [193] C.B. Manufacturing, C.R. Specimens, T. Determina-, Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers —, (2009) 1–14. https://doi.org/10.1520/D0412-16.2.
    [194] A. International, ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM International, 2015. https://books.google.com.tw/books?id=T0vBuQEACAAJ.
    [195] I.S.O. 3386‐1, Polymeric Materials, Cellular Flexible–Determination of Stress–strain Characteristics in Compression–Part 1: Low‐density Materials, (1986).
    [196] M. Khodaei, M. Safarabadi Farahani, M. Haghighi-Yazdi, Numerical investigation of high velocity impact on foam-filled honeycomb structures including foam fracture model, Mech. Adv. Mater. Struct. 0 (2020) 1–13. https://doi.org/10.1080/15376494.2020.1793239.
    [197] L. Zhang, Z. Hu, M.Y. Wang, S. Feih, Hierarchical sheet triply periodic minimal surface lattices: Design, geometric and mechanical performance, Mater. Des. 209 (2021) 109931. https://doi.org/10.1016/J.MATDES.2021.109931.
    [198] H.J. Qi, M.C. Boyce, Stress-strain behavior of thermoplastic polyurethanes, Mech. Mater. 37 (2005) 817–839. https://doi.org/10.1016/j.mechmat.2004.08.001.
    [199] Ali, A Review of Constitutive Models for Rubber-Like Materials, Am. J. Eng. Appl. Sci. 3 (2010) 232–239. https://doi.org/10.3844/ajeassp.2010.232.239.
    [200] M.J. Prajapati, A. Kumar, S.C. Lin, J.Y. Jeng, Multi-material additive manufacturing with lightweight closed-cell foam-filled lattice structures for enhanced mechanical and functional properties, Addit. Manuf. 54 (2022) 102766. https://doi.org/10.1016/j.addma.2022.102766.
    [201] N.M. Lippa, P.K. Collins, J. Bonacci, S.G. Piland, J.W. Rawlins, T.E. Gould, Mechanical ageing performance of minimalist and traditional footwear foams, Footwear Sci. 9 (2017) 9–20. https://doi.org/10.1080/19424280.2016.1228702.
    [202] K. Brückner, S. Odenwald, S. Schwanitz, J. Heidenfelder, T. Milani, Polyurethane-foam midsoles in running shoes - Impact energy and damping, Procedia Eng. 2 (2010) 2789–2793. https://doi.org/10.1016/j.proeng.2010.04.067.
    [203] S. Li, J.S. Yang, R. Schmidt, L.Z. Wu, K.U. Schröder, Compression and hysteresis responses of multilayer gradient composite lattice sandwich panels, Mar. Struct. 75 (2021) 102845. https://doi.org/10.1016/j.marstruc.2020.102845.
    [204] T.L.G. Boyer, Howard E., Metals Handbook Desk Edition, 2018. https://doi.org/10.31399/asm.hb.mhde2.9781627081993.
    [205] D. Zhang, F. Scarpa, Y. Ma, K. Boba, J. Hong, H. Lu, Compression mechanics of nickel-based superalloy metal rubber, Mater. Sci. Eng. A. 580 (2013) 305–312. https://doi.org/10.1016/j.msea.2013.05.064.
    [206] K. Senthil, A. Arockiarajan, R. Palaninathan, B. Santhosh, K.M. Usha, Defects in composite structures: Its effects and prediction methods - A comprehensive review, Compos. Struct. 106 (2013) 139–149. https://doi.org/10.1016/j.compstruct.2013.06.008.
    [207] J. Zou, Y. Chen, M. Liang, H. Zou, Effect of hard segments on the thermal and mechanical properties of water blown semi-rigid polyurethane foams, J. Polym. Res. 22 (2015). https://doi.org/10.1007/s10965-015-0770-y.
    [208] S. Wickramasinghe, T. Do, P. Tran, FDM-Based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments, Polymers (Basel). 12 (2020) 1–42. https://doi.org/10.3390/polym12071529.
    [209] E.G. Gordeev, A.S. Galushko, V.P. Ananikov, Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling, PLoS One. 13 (2018). https://doi.org/10.1371/journal.pone.0198370.
    [210] L. Mullins, Softening of Rubber by Deformation, Rubber Chem. Technol. 42 (1969) 339–362. https://doi.org/10.5254/1.3539210.
    [211] J. Diani, B. Fayolle, P. Gilormini, A review on the Mullins effect, Eur. Polym. J. 45 (2009) 601–612. https://doi.org/10.1016/j.eurpolymj.2008.11.017.
    [212] L. Collini, C. Ursini, A. Kumar, Design and optimization of 3D fast printed cellular structures, Mater. Des. Process. Commun. 3 (2021). https://doi.org/10.1002/mdp2.227.
    [213] M.F. Alzoubi, E.Y. Tanbour, R. Al-Wakedb, Compression and hysteresis curves of nonlinear polyurethane foams under different densities, strain rates and different environmental conditions, in: ASME 2011 Int. Mech. Eng. Congr. Expo. IMECE 2011, American Society of Mechanical Engineers (ASME), 2011: pp. 101–109. https://doi.org/10.1115/imece2011-62290.
    [214] W. Huang, D. Restrepo, J.Y. Jung, F.Y. Su, Z. Liu, R.O. Ritchie, J. McKittrick, P. Zavattieri, D. Kisailus, Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs, Adv. Mater. 31 (2019) 1901561. https://doi.org/10.1002/ADMA.201901561.
    [215] X. Gao, S. Qi, X. Kuang, Y. Su, J. Li, D. Wang, Fused filament fabrication of polymer materials: A review of interlayer bond, Addit. Manuf. 37 (2021) 101658. https://doi.org/10.1016/j.addma.2020.101658.
    [216] D. Han, H. Lee, Recent advances in multi-material additive manufacturing: methods and applications, Curr. Opin. Chem. Eng. 28 (2020) 158–166. https://doi.org/10.1016/j.coche.2020.03.004.
    [217] N. Dialami, M. Chiumenti, M. Cervera, R. Rossi, U. Chasco, M. Domingo, Numerical and experimental analysis of the structural performance of AM components built by fused filament fabrication, Int. J. Mech. Mater. Des. 17 (2021) 225–244. https://doi.org/10.1007/s10999-020-09524-8.
    [218] A. Al Rashid, M. Koç, Fused filament fabrication process: A review of numerical simulation techniques, Polymers (Basel). 13 (2021) 3534. https://doi.org/10.3390/polym13203534.
    [219] O.E. Akbaş, O. Hıra, S.Z. Hervan, S. Samankan, A. Altınkaynak, Dimensional accuracy of FDM-printed polymer parts, Rapid Prototyp. J. 26 (2020) 288–298. https://doi.org/10.1108/RPJ-04-2019-0115.
    [220] B. Zharylkassyn, A. Perveen, D. Talamona, Effect of process parameters and materials on the dimensional accuracy of FDM parts, in: Mater. Today Proc., Elsevier, 2021: pp. 1307–1311. https://doi.org/10.1016/j.matpr.2020.11.332.
    [221] C. Ursini, L. Collini, Fdm layering deposition effects on mechanical response of tpu lattice structures, Materials (Basel). 14 (2021). https://doi.org/10.3390/ma14195645.
    [222] M.M. Abedi, R. Jafari Nedoushan, M. Sheikhzadeh, W.R. Yu, The crashworthiness performance of thin-walled ultralight braided lattice composite columns: Experimental and finite element study, Compos. Part B Eng. 202 (2020) 108413. https://doi.org/10.1016/j.compositesb.2020.108413.
    [223] A. Baykasoğlu, C. Baykasoğlu, E. Cetin, Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes, Thin-Walled Struct. 149 (2020) 106630. https://doi.org/10.1016/j.tws.2020.106630.
    [224] M. Sawyer, The Economics of Industries and Firms, Econ. Ind. Firms. (1985). https://doi.org/10.4324/9780203980064.
    [225] J. Gharechahi, N. Asadzadeh, F. Shahabian, M. Gharechahi, Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique., J. Dent. (Tehran). 11 (2014) 398–405.
    [226] L.W. Seow, Y.C. Lam, Optimizing flow in plastic injection molding, J. Mater. Process. Technol. 72 (1997) 333–341. https://doi.org/10.1016/S0924-0136(97)00188-X.
    [227] A. Kumar, L. Collini, C. Ursini, J.-Y. Jeng, Energy Absorption and Stiffness of Thin and Thick-Walled Closed-Cell 3D-Printed Structures Fabricated from a Hyperelastic Soft Polymer, Materials (Basel). 15 (2022) 2441. https://doi.org/10.3390/ma15072441.
    [228] M. Jiyalal, A. Kumar, S. Lin, J. Jeng, Multi-material additive manufacturing with lightweight closed- cell foam-filled lattice structures for enhanced mechanical and functional properties, (n.d.).
    [229] J.H. Lin, C.M. Lin, C.C. Huang, C.C. Lin, C.T. Hsieh, Y.C. Liao, Evaluation of the manufacture of sound absorbent sandwich plank made of PET/TPU honeycomb grid/PU foam, J. Compos. Mater. 45 (2011) 1355–1362. https://doi.org/10.1177/0021998310381438.
    [230] P.C. Eleftheriou, Industrial noise and its effects on human hearing, Appl. Acoust. 63 (2002) 35–42. https://doi.org/10.1016/S0003-682X(01)00022-6.
    [231] L.A. Taber, Compression of fluid-filled spherical shells by rigid indenters, J. Appl. Mech. Trans. ASME. 50 (1983) 717–722. https://doi.org/10.1115/1.3167135.
    [232] H. Liu, K. Fu, H. Zhu, B. Yang, The acoustic property and impact behaviour of 3D printed structures filled with shear thickening fluids, Smart Mater. Struct. 31 (2021) 015026. https://doi.org/10.1088/1361-665X/AC3B20.
    [233] R. Aslan, O. Turan, An acoustic structure design supported by shear thickening fluid for sound absorption, Appl. Acoust. 182 (2021) 108257. https://doi.org/10.1016/j.apacoust.2021.108257.
    [234] A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators, Nat. Commun. 8 (2017) 1–8. https://doi.org/10.1038/s41467-017-00685-3.
    [235] D.Y. Choi, M.H. Kim, Y.S. Oh, S.H. Jung, J.H. Jung, H.J. Sung, H.W. Lee, H.M. Lee, Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring, ACS Appl. Mater. Interfaces. 9 (2017) 1770–1780. https://doi.org/10.1021/acsami.6b12415.
    [236] X. Li, H. Duan, P. Lv, X. Yi, Soft Actuators Based on Liquid-Vapor Phase Change Composites, Soft Robot. 8 (2021) 251–261. https://doi.org/10.1089/soro.2020.0018.
    [237] S. Ponnupandian, P. Mondal, T. Becker, R. Hoogenboom, A.B. Lowe, N.K. Singha, Self-healing hydrophobic POSS-functionalized fluorinated copolymers: Via RAFT polymerization and dynamic Diels-Alder reaction, Polym. Chem. 12 (2021) 876–884. https://doi.org/10.1039/d0py01522a.
    [238] S.M. Aouadi, J. Gu, D. Berman, Self-healing ceramic coatings that operate in extreme environments: A review, J. Vac. Sci. Technol. A. 38 (2020) 050802. https://doi.org/10.1116/6.0000350/15959333/050802_1_ACCEPTED_MANUSCRIPT.PDF.
    [239] A.K. Agrawal, M. Amjadian, Seismic component devices, Innov. Bridg. Des. Handb. Constr. Rehabil. Maint. (2022) 637–662. https://doi.org/10.1016/B978-0-12-823550-8.00027-5.

    無法下載圖示 全文公開日期 2026/07/05 (校內網路)
    全文公開日期 2028/07/05 (校外網路)
    全文公開日期 2026/07/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE