簡易檢索 / 詳目顯示

研究生: 陳怡承
Yi-Cheng Chen
論文名稱: 植物工廠之作物生產配置問題
Crop Allocation Problems in Plant Factories
指導教授: 郭伯勳
Po-Hsun Kuo
口試委員: 曹譽鐘
none
喻奉天
none
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 106
中文關鍵詞: 植物工廠作物排程整數規劃啟發式演算法收成距離
外文關鍵詞: plant factory, crop allocation, integer programming, heuristic algorithm, travel distance
相關次數: 點閱:262下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

透過控制生產過程的環境參數,植物工廠能在任何季節穩定地為市場供給多種類且高品質的蔬菜。為了滿足市場對不同蔬菜的需求,如何將耗時不同的栽培作業有效率地指派予工廠中的生產單位是相當困難的議題。本研究將此問題描述成整數規劃模型,在考量滿足需求、產能限制及生產限制下追求具最小收成距離之生產配置。本研究以AMPL介面於NEOs server上利用CPLEX solver進行最佳化之求解。研究大量的小型範例後,我們歸納出數個重要發現,並利用這些發現提出一啟發式演算法。此演算法分有兩階段:在第一階段中,將檢驗現行的最大產能是否能夠滿足客戶的要求,並在第二階段中產生一個用來指派栽培作業予生產單位的配置計畫,且經由此計畫配置的作物在成熟時只需要極小的途程便能收集完畢。在隨機產生的62組中型大小情境中,演算法將透過與最佳解進行比較、分析並進行驗證與討論。最後在大型例子裡,演算法將再各種情境下與NEOs server運算8小時的結果進行比較以驗證演算法的一致性。


To supply high-quality and consistent vegetables to meet various customer demands, plant factories face a challenge in the allocation problem when considering different growth times for different types of crops. This thesis develops integer programming formulations to minimize harvest travel distance as well as consider customer demand requests, factory capacity and system configuration. Several observations are found based in the optimal solutions in small-sized examples, and heuristic algorithms are proposed according to these optimal solutions. Comparisons of the heuristic algorithms and optimal solutions are provided in 62 randomly generated medium-sized examples. For larger-scale examples, heuristic algorithm results are better than the solution run in NEOs server by AMPL and CPLEX solver after 8 hours. Phase 1 of the algorithm provide feasibility check to determine if the customer requirements can be fulfilled in the current capacity. Phase 2 proposes searching methods to find allocation with short travel distance in harvest.

中文摘要i Abstractii List of Figuresv List of Tablesvi 1Introduction1 1.1Research motivation and objective2 1.2Research scopes and constraints3 1.3Research methodology3 1.4Research structure4 2Literature Review6 2.1Introduction to Plant Factories6 2.2Scheduling9 2.2.1Nurse Rostering Problems9 2.2.2Crop Supply Problems14 3Mathematical Programing Models17 3.1Assumptions17 3.2Formulations19 3.2.1Scheduling Constraints19 3.2.2Evaluation Formulations24 3.3Observations and Algorithms31 3.3.1Observations32 3.3.2Algorithms41 3.4Individual harvesting travel for crops47 3.4.1Formulations47 3.4.2Observations and Algorithms49 3.5Extensions55 4Numerical Examples58 4.1Small examples: the phenomena of spatial interferences58 4.2Medium examples: the validation and performances of the algorithms72 4.2.1Validation of the algorithms72 4.2.2Performances of the two Algorithms81 4.3Large examples: performance of the algorithms in larger examples.88 5Conclusions and future research97 5.1Conclusions97 5.2Future search98 References99

方煒,台灣植物工廠發展現況與展望,台灣大學生物機電系
Abdennadher, S., & Schlenker, H. (1999). Nurse scheduling using constraint logic programming. Proceedings of the National Conference on Artificial Intelligence, 838-843.
Arthur, J. L., & Ravindran, A. (1981). A multiple objective nurse scheduling model. AIIE Transactions, 13(1), 55-60.
Berrada, I., Ferland, J. A., & Michelon, P. (1996). A multi-objective approach to nurse scheduling with both hard and soft constraints. Socio-Economic Planning Sciences, 30(3), 183-193.
Biewald, A., Lotze-Campen, H., Otto, I., Brinckmann, N., Bodirsky, B., Weindl, I., et al. (2015). The impact of climate change on costs of food and people exposed to hunger at subnational scale, PIK Report (Vol. 2015, pp. 1-80).
Burke, E., Cowling, P., De Causmaecker, P., & Berghe, G. V. (2001). A memetic approach to the nurse rostering problem. Applied Intelligence, 15(3), 199-214.
Burns, R. N., & Koop, G. J. (1987). MODULAR APPROACH TO OPTIMAL MULTIPLE-SHIFT MANPOWER SCHEDULING. Operations Research, 35(1), 100-110.
Cheang, B., Li, H., Lim, A., & Rodrigues, B. (2003). Nurse rostering problems - A bibliographic survey. European Journal of Operational Research, 151(3), 447-460.
Cheng, B. M. W., Lee, J. H. M., & Wu, J. C. K. (1996). Constraint-based nurse rostering system using a redundant modeling approach. Paper presented at the Proceedings of the International Conference on Tools with Artificial Intelligence.
Dercon, S., & Porter, C. (2014). Live aid revisited: Long-term impacts of the 1984 Ethiopian famine on children. Journal of the European Economic Association, 12(4), 927-948.
Dogliotti, S., Rossing, W. A. H., & Van Ittersum, M. K. (2003). ROTAT, a tool for systematically generating crop rotations. European Journal of Agronomy, 19(2), 239-250.
Dowsland, K. A. (1998). Nurse scheduling with tabu search and strategic oscillation. European Journal of Operational Research, 106(2-3), 393-407.
Dury, J., Schaller, N., Garcia, F., Reynaud, A., & Bergez, J. E. (2012). Models to support cropping plan and crop rotation decisions. A review. Agronomy for Sustainable Development, 32(2), 567-580.
Freuder, E. C., & Wallace, R. J. (1992). Partial constraint satisfaction. Artificial Intelligence, 58(1-3), 21-70.
Goto, E. (2012). Plant production in a closed plant factory with artificial lighting, Acta Horticulturae (Vol. 956, pp. 37-49).
Havlík, P., H. Valin, M. Gusti, E. Schmid,, D. Leclère, N. F. l., M. Herrero,, N. Khabarov, A. M., M. Cantele, and, & Obersteiner, M. (2015). Climate Change Impacts and Mitigation in the Developing World: An Integrated Assessment of Agriculture and Forestry Sectors.
Hu, M.-C., Yu-HuiChen, & Li-ChunHuang. (2014). A sustainablevegetablesupplychainusingplantfactoriesinTaiwanese
markets:ANash–Cournotmodel. Int. J.ProductionEconomics, 49-56.
Jaumard, B., Semet, F., & Vovor, T. (1998). A generalized linear programming model for nurse scheduling. European Journal of Operational Research, 107(1), 1-18.
Jiang, J.-A., Su, Y.-L., Shieh, J.-C., Kuo, K.-C., Lin, T.-S., Lin, T.-T., et al. (2014). On application of a new hybrid maximum power point tracking (MPPT) based photovoltaic system to the closed plant factory. Applied Energy, 124, 309-324.
Kozai, T., Ohyama, K., & Chun, C. (2006). Commercialized closed systems with artificial lighting for plant production, Acta Horticulturae (Vol. 711, pp. 61-70).
Millar, H. H., & Kiragu, M. (1998). Cyclic and non-cyclic scheduling of 12 h shift nurses by network programming. European Journal of Operational Research, 104(3), 582-592.
Miller, H. E., William, P., & Gustave, J. R. (1976). Nurse Scheduling Using Mathematical Programming. Operations Research, 24(5), 857-870.
Moon, S.-M., Kwon, S.-Y., & Lim, J.-H. (2014). Minimization of Temperature Ranges between the Top and
Bottom of an Air Flow Controlling Device through Hybrid
Control in a Plant Factory. The Scientific World Journal.
Santos, L. M. R. d., Costa, A. M., Arenales, M. N., & Santos, R. H. S. (2010). Sustainable Vegetable Crop Supply Problem. European Journal of Operational Research, 639-647.
Wang, J., Yang, Q., Tong, Y., & Wei, L. (2014). Reduction in electric-energy consumption for cooling in a plant factory with artificial light, Acta Horticulturae (Vol. 1037, pp. 293-298).
Watanabe, H. (2011). Light-controlled plant cultivation system in Japan - Development of a vegetable factory using LEDs as a light source for plants, Acta Horticulturae (Vol. 907, pp. 37-44).

QR CODE