簡易檢索 / 詳目顯示

研究生: 林育陞
YU-SHENG LIN
論文名稱: 碳含量對錳鋁鋼內spinodal相分離與有序化相變化的影響研究
The study of the effect of carbon concentrations on spinodal decomposition and ordering reaction occurring in Fe-Mn-Al steels
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 135
中文關鍵詞: spinodal相分離有序化相變化層狀反應(r+k)層狀組織
外文關鍵詞: spinodal decomposition, ordering reaction, cellular reaction, Fe-Mn-Al steels
相關次數: 點閱:311下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

錳鋁合金鋼具有取代部分傳統鎳鉻系不銹鋼的潛力,而錳鋁鋼相變化之研究則是提供發展錳鋁不銹鋼的重要基礎。本論文是研究兩種成份分別為鐵-25.6錳-6.6鋁-0.56碳與鐵-25.5錳-6.6鋁-0.44碳的錳鋁鋼相變化情形,為發展錳鋁不銹鋼作準備。實驗方法為加熱錳鋁鋼至1100℃做固溶處理與後續低溫恆溫處理。研究顯示經1100℃高溫冷卻的錳鋁鋼內發生了spinodal相分離與有序化相變化之反應,其中高溫沃斯田體相()於冷卻過程的高溫區經相分離而生成兩個低溫沃斯田體相(’ + ”),其中’為低碳相而”為高碳相,spinodal相分離的反應式為 ’ + ”;而高碳沃斯田體相於後續的冷卻過程再經由有序化相變化生成L12,其反應式為”  L12。於低溫恆溫處理時,於沃斯田體基地內亦發現經由層狀反應生成的層狀的沃斯田體與-碳化物晶粒,此類生成物稱為(+)層狀組織。當溫度下降至750℃至600℃時,於(+)層狀組織內亦會發現層狀-碳化物()與沃斯田體晶粒之間伴隨有沃斯田體雙晶(t)的出現而產生(++t)的層狀組織。


Mn-Al steels have the potential to substitute some of the commercial Ni-Cr stainless steels. For the development of Mn-Al stainless steels, phase transformations play an important role to support the research and development department. We have studied the phase transformations of two Fe-Mn-Al steels with the compositions of Fe-25.6 Mn-6.6 Al-0.63 C (wt%) and Fe-25.4 Mn-6.6 Al-0.38 C. The methodology of the experiments includes heating the steel at 1100℃, quenching to room temperature, and holding isothermally at low temperatures. The results show that the spinodal decomposition and ordering reaction occur in the Fe-Mn-Al steel after heating at and cooling from 1100℃. The reactions are as follows.  ’ + ” where  is the high temperature austenite, and ’ and ” are low temperature austenite phases. The carbon contents of both phases are different. ’ is low in carbon, and ” is high in carbon. The carbon-enriched austenite phase also transforms into L12 phase via ordering reaction upon further cooling to lower temperatures as follows. ”  L12. After the isothermal holding at low temperature, we have also found that κ-carbide appears in the austenite as either grain boundary or cellular precipitate. When the isothermal holding temperatures are below to 750℃, the cellular precipitates are composed of lamellar austenite, -carbide and austenite twins. The lamellar -carbide grains are always accompanying with austenite twins in austenite matrix.

第一章 前 言 第二章 文獻回顧 2.1擴散型相變化 2.2 合金鋼的碳化物 2.3 雙晶 2.4 Spinodal相分離與有序化相變化 第三章 實驗方法 3.1 合金熔鑄 3.2 鑄錠加工 3.3 熱處理 3.4 分析儀器 第四章 結果與討論 4.1 A合金 4.2 B合金 4.3層狀組織內之沃斯田體雙晶 4.4 Spinodal相分離與有序化相變化 第五章 結 論 參考文獻

1. H.V. Lawrence, 6th ed., Addison Wesley (1995).
2. R.E. Reed-Hill, 3rd ed., PWS (1992).
3. W.F. Smith, “Structure and Properties of Engineering Alloys”, (1993).
4. J.W. Lee, C.C. Wu, T.F. Liu, Scripta Mater., 50, 1389 (2004).
5. C.M. Liu, H.C. Cheng, C.Y. Chao, K.L. Ou, J. All. Comp., 488, 52 (2009).
6. T.F. Liu, C.C. Wu, Scripta Meatll., 23, 1087 (1989).
7. T.F. Liu, C.C. Wu, Scripta Metall., 23, 1243 (1989).
8. T.F. Liu, C.M. Wan, Scripta Metall., 19, 727 (1985).
9. T.F. Liu, J.C. Tasy, Scripta Metall., 21, 1213 (1987).
10. Y.L. Lin, C.P. Chou, Scripta Metall., 27, 67 (1992).
11. D.S. Zhou, G.J. Shiflet, Scripta Metall., 27, 1215 (1992).
12. C.R. Hutchinson, G.J. Shiflet, Scripta Mater., 50, 1 (2004).
13. H. Huang, D. Gan, P.W. Kao, Scripta Metall., 30, 499 (1994).
14. M.C. Li, H. Chang, P.W. Kao, D. Gan, Mater. Chem. Phys., 59, 96 (1999).
15. 胡廷菁,“錳鋁鋼合金鋼的層狀反應相變化研究”,國立台灣科技大學機械工程研究所,碩士論文 (2012)。
16. 劉柏言,“錳鋁鋼層狀組織的-碳化物旁沃斯田體雙晶層之研究”,國立台灣科技大學機械工程研究所,碩士論文 (2012)。
17. N. Boonyachut, ProQuest LLC (2007).
18. M.C. Li, H. Chang, P.W. Kao, Mat. Chem. Phys., 5996 (1999).
19. K.H. Han, J.C. Yoon, W.K. Choo, Scripta Metall., 20, 33 (1986).
20. Y.G. Kim, Y.S. Park, J.K. Han, Metall. Trans. A, 16, 1689 (1985).
21. Y.G. Kim, J.K. Han, E.W. Lee, Metall. Trans. A, 17, 2097 (1986).
22. W.K. Choo, K.H. Han, Metall. Trnans. A, 16 (1985).
23. .J.B. Lupton, S. Murphy, J.H. Woodhead, Metall. Trans., 3(11), 2923 (1972).
24. P.H. Pumphrey, J.W. Edington, Acta Metall., 22, 89 (1974).
25. P.R. Howell, J.V. Bee, R.W.K. Honeycombe, Metall. Trans., 10A, 1213 (1979).
26. N. Terao and B. Sasmal, Metallography, 13, 117 (1980).
27. N. Terao and B. Sasmal, Transactions of the Japan Institute of Metals., 22, 379 (1981).
28. K. Campbell, R.W.K. Honeycombe, Metal Sci., 8, 197 (1974).
29. K.H. Hwang, C.M. Wan, J.G. Byrne, Mat. Sci Eng. A, 132, 161 (1991).
30. R.C. Ecob, J.V. Bee, B. Ralph, physica status solidi, volume 52, Issue 116 March (1979).
31. R.C. Ecob, J.V. Bee, B. Ralph, “Some Microstructural Observations Of Transformations In A Copper-Titanium Alloy” (1979).
32. R. C. Ecob, J. V. Bee, B. Ralph, Met. trans. 11A, 1407 (1980).
33. J.W. Cahn, Acta Metall., 9, 795 (1961).
34. J.W. Cahn, Acta Metall., 10, 179 (1962).
35. W.C. Cheng, C.Y. Cheng, C.W. Hsu, D.E. Laughlin, Mater. Sci. Eng. A, 642, 128 (2015).
36. D.E. Laughlin, Acta Metall., 23, 329 (1975).
37. W.A. Soffa, D.E. Laughlin, Prog. Mater. Sci., 49, 347 (2004).
38. W.A. Soffa, D.E. Laughlin, Acta Metall., 37, 3019 (1989).
39. T. Tadaki, K. Shimizuand, T. Watanabe, Trans. J. Inst. Metals., 12, 386 (1971).
40. R. Oshima, C.M. Wayman, Metall. Trans., 3, 2163 (1972).
41. K.H. Han, J.C. Yoon, W.K. Choo, Scripta Metall., 20 , 33 (1986).
42. K. Sato, K. Tagawaand, Y. Inoue, Scripta Metall.,22 , 899 (1988).
43. K. Sato, K. Tagawaand, Y. Inoue, Mater. Sci. Eng. A, 111, 45 (1989).
44. K. Sato, K. Tagawaand, Y. Inoue, Metall. Trans. A, 21, 5 (1990).
45. K.H. Han, Mater. Sci. Eng. A, 197, 223 (1995).
46. W.K. Choo, J.H. Kimand, J.C. Yoon, Acta Mater., 45, 4877 (1997).
47. C.S. Wang, C.N. Hwang, C.G. Chao, T.F. Liu, Scripta Mater., 57, 809 (2007).
48. D.A. Porter, K.E. Easterling, 3rd (2008).

QR CODE