簡易檢索 / 詳目顯示

研究生: 李建輝
Chien-Hui Li
論文名稱: 水熱法製備氧化鉬與鎳鐵硫化物 多相結構電極在鹼性環境下用於整體水分解
Molybdenum Oxide and Nickel-Iron Sulfide Multi-Phase Structure Electrode Prepared by Hydrothermal Method for Overall Water Splitting in Alkaline Environment
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 柯文政
Wen-Cheng Ke
薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 130
中文關鍵詞: 水熱法鎳硫化物鐵硫化物氧化鉬電催化性能整體水分解
外文關鍵詞: Hydrothermal method, nickel sulfide, iron sulfide, molybdenum oxide, electrocatalytic performance, overall water splitting
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究透過簡單的一步水熱程序,成功在鎳泡綿上製備出在鹼性環境中HER與OER均表現出優異催化活性的雙功能催化電極。實驗中,我們調控不同反應物種如TAA、CTAB、Fe源、Mo源的濃度來沉積催化電極,透過SEM、EDS、XRD、Raman、XPS來分析表面特徵,並藉由雙頻恆電位/電流/交流阻抗儀量進行電化學測試。
根據實驗結果,添加的TAA會和鎳泡綿本身提供的Ni源產生反應,形成奈米樹狀結構之鎳硫化物Ni3S2,隨後添加之CTAB則作為陽離子表面活性劑使表面結構改變,形成奈米柱狀結構,不僅有調節結構和電子效益等特性,且會導致更高的比表面積,而有更多的催化活性位點和更好的導電性。Fe源的摻雜使柱狀結構之間多了額外了鐵硫化物FeS2奈米球狀結構,使OER性能大幅提升。最後添加的Mo源則會在水熱時形成厚的MoOx奈米顆粒結構覆蓋在Ni3S2、FeS2結構上。氧化鉬廣泛的變化性和可調性,使薄膜在HER電催化性方面有大幅度的提升。
電化學量測結果顯示,在1M KOH鹼性環境下,Mo0.5Fe0.25-1g CTAB/NS4薄膜有著良好的雙功能電催化性用於整體水分解。在LSV析氧反應量測中,為達到100 mA/cm2和500 mA/cm2 電流密度,過電位僅需0.23 V、0.34 V,Tafel斜率值為96 mV/dec。在析氫反應量測中,-10 mA/cm2、-100 mA/cm2電流密度下,過電壓分別僅需-0.17 V、-0.26 V, Tafel斜率值為 46 mV/dec。因有良好HER、OER性能,我們將Mo0.5Fe0.25-1g CTAB/NS4同時用作陰極和陽極,組裝成簡易鹼性電解槽,並用於量測整體水分解性能,在100 mA/cm2的電流密度下,可以得到1.71 V的電位,且在CstC量測中,也具有良好的穩定性。透過SEM、EDS、XRD、Raman、XPS等結構分析推斷薄膜表面有著Ni3S2、FeS2、MoOx等多相結構存在。


In this research, via a simple one-step hydrothermal procedure, we successfully prepared bifunctional electrocatalysts on nickel foam that had both HER and OER exhibit excellent performance in alkaline environment. During the experiment, we adjusted the concentrations of different materials, e.g. TAA, CTAB, Fe source, and Mo source. All the coating properties were characterized and anylyzed with SEM, EDS, XRD, Raman, XPS measurement, and electrochemical test.
According to the experimental results, the added TAA reacted with the Ni source from the nickel foam to form nickel sulfide Ni3S2 in the nano-dendritic structure. The added CTAB acted as a cationic surfactant to change the surface structure into nano columnar structure. The added CTAB not only have the characteristics of adjusting the structure and electronic benefits, but also makes film have higher specific surface area, so the formed deposit has more catalytically active sites and better conductivity. The addition of the Fe source formed iron sulfide FeS2 nanosphere structure between the columnar structures of Ni3S2 to provide the improved OER performance. Finally, the Mo source was added to form amorphous MoOx irregular bulk structures and to cover on the Ni3S2/FeS2 structure. Molybdenum oxide has a wide range of variability and tunability, which greatly improves the HER performance.
According to the electrochemical measurement results, Mo0.5Fe0.25-1g CTAB/NS4 film has excellent bifunctional catalytic performance for overall water splitting in 1M KOH. In the LSV oxygen evolution reaction (OER) measurement, to reach the catalytic current density of 100 mA/cm2 and 500 mA/cm2, it only required overpotentials of 0.23 V and 0.34 V, respectively, while the Tafel slope was 96 mV/dec. In the LSV hydrogen evolution reaction (HER) measurement, to reach the catalytic current density of -10 mA/cm2 and -100 mA/cm2 , it only required overpotentials of -0.17 V and -0.26 V, respectively, while the Tafel slope was 48 mV/dec . Due to its excellent HER and OER performance, Mo0.5Fe0.25-1g CTAB/NS4 was concurrently used as the cathode and anode, assembled into a simple alkaline electrolyzer, and used to measure the electrocatalytic performance of the overall water splitting. In the LSV measurement, we achieved potential of 1.71 V at a current density of 100 mA/cm2. In CstC measurement the film also had good stability for 20 hours. With the analyses of SEM, EDS, XRD, Raman, XPS, we has identiied that the catalytic electrode is a multi-phase structure of Ni3S2, FeS2, and MoOx.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 X 表目錄 XVII 第一章、緒論 1 1.1前言 1 1.2研究動機與目的 3 2.1 總體水分解的電化學基本原理 4 2.1.2 鹼性環境下的HER反應機制 5 2.1.3 鹼性環境下的OER反應機制 5 2.2過鍍金屬硫化物 (TMS) 7 2.2.1 雙功能非層狀過鍍金屬硫化物 7 2.2.2 鎳基硫化物 8 2.2.3鐵基硫化物 25 2.3過渡金屬氧化物 29 2.3.1 鉬基氧化物 30 第三章、實驗方法與步驟 35 3.1實驗材料與規格 35 3.2實驗設備 36 3.2.1分析電子天平 36 3.2.2 加熱磁石攪拌器 36 3.2.3 高壓釜 36 3.2.4 真空烘箱 36 3.2.5 烘箱 36 3.2.6 超音波震盪機 36 3.3實驗步驟 37 3.3.1基板前處理 37 3.3.2 水熱法製備薄膜 37 3.3.3薄膜性質測量 40 3.4 分析儀器介紹與量測參數 41 3.4.1高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM) 41 3.4.2 X光繞射技術 (High Power X-Ray Diffractometry, XRD) 42 3.4.3 三電極電化學反應量測系統 43 3.4.4顯微拉曼光譜儀 (Micro Raman Spectrometer) 45 3.4.5 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 46 第四章、結果與討論 48 4.1 不同TAA含量對所得NSx (x= 2、4、6)薄膜之分析探討 49 4.1.1不同TAA含量對所得NSx (x= 2、4、6)薄膜用於析氧反應之LSV量測及與相對應的Tafel 斜率 49 4.1.2 不同TAA含量對所得NSx (x= 2、4、6)薄膜於析氧反應其EIS及CV分析 52 4.1.3不同TAA含量對所得NSx (x= 2、4、6)薄膜其XRD分析 56 4.1.4不同TAA含量對所得NSx (x= 2、4、6)薄膜其SEM及EDS分析 58 4.1.5不同TAA含量對所得NSx (x= 2、4、6)薄膜其拉曼分析 60 4.1.6 NS4薄膜XPS表面元素組成分析 61 4.2 不同CTAB含量對所得yCTAB/NS4 (y= 0 g、0.75 g、1 g、1.25 g)薄膜分析探討 63 4.2.1不同CTAB含量對所得yCTAB/NS4 (y=0 g、0.75 g、1 g、1.25 g)薄膜用於析氧反應之LSV量測與相對應的Tafel斜率 63 4.2.2 不同CTAB含量對所製得yCTAB/NS4 (y= 0 g、0.75 g、1 g、1.25 g)薄膜其EIS及CV分析 66 4.2.3不同CTAB含量對所得yCTAB/NS4 (y= 0 g、0.75 g、1 g、1.25 g)薄膜其XRD分析 70 4.2.4不同CTAB含量對所得yCTAB/NS4 (y= 0 g、0.75 g、1 g、1.25 g)薄膜其SEM及EDS分析 72 4.2.5不同CTAB含量對所得yCTAB/NS4 (y= 0 g、0.75 g、1 g、1.25 g)薄膜其拉曼分析 74 4.2.6 1 g CTAB/NS4薄膜其XPS分析 75 4.3 摻雜不同陽離子M0.5-1g CTAB/NS4 (M= Fe、Mo、Cu、V)薄膜用於析氧及析氫反應之LSV分析 77 4.4摻雜不同含量鐵源對所得 Fez-1g CTAB/NS4 (z= 0、0.1、0.25、0.5)薄膜分析探討 81 4.4.1摻雜不同含量鐵源對所得Fez-1g CTAB/NS4 (z= 0、0.1、0.25、0.5)薄膜用於析氧反應之LSV量測與相對應的Tafel斜率 81 4.4.2 摻雜不同含量鐵源對所得Fez-1g CTAB/NS4 (z= 0、0.1、0.25、0.5)薄膜其EIS及CV分析 84 4.4.3摻雜不同含量鐵源對所得Fez-1g CTAB/NS4 (z= 0、0.1、0.25、0.5)薄膜其XRD分析 88 4.4.4摻雜不同含量鐵源對所得Fez-1g CTAB/NS4 (z= 0、0.1、0.25、0.5)薄膜其SEM及EDS分析 90 4.4.5摻雜不同含量鐵源對所得Fez-1g CTAB/NS4 (z= 0、0.1、0.25、0.5)薄膜其拉曼分析 92 4.4.6 Fe0.25-1g CTAB/NS4薄膜XPS表面元素組成分析 94 4.5摻雜不同含量鉬源對所得MowFe0.25-1g CTAB/NS4 (w= 0、0.25、0.5、0.75)薄膜分析探討 96 4.5.1摻雜不同含量鉬源對所得MowFe0.25-1g CTAB/NS4 (w= 0、0.25、0.5、0.75)薄膜用於析氫反應下之LSV量測及相對應之Tafel斜率 96 4.5.2 摻雜不同含量鉬源對所得MowFe0.25-1g CTAB/NS4 (w= 0、0.25、0.5、0.75)薄膜用於析氫反應其EIS分析 99 4.5.3摻雜不同含量鉬源對所得MowFe0.25-1g CTAB/NS4 (w= 0、0.25、0.5、0.75)薄膜用於析氧反應下之LSV量測及其相對應其Tafel斜率 101 4.5.4摻雜不同含量鉬源對所得MowFe0.25-1g CTAB/NS4 (w= 0、0.25、0.5、0.75)薄膜用於析氧反應其EIS分析 104 4.5.5摻雜不同含量鉬源對所得MowFe0.25-1g CTAB/NS4 (w= 0、0.25、0.5、0.75)薄膜其CV分析 106 4.5.6摻雜不同含量鉬源對所得MowFe0.25-1g CTAB/NS4 (w= 0、0.25、0.5、0.75)薄膜其XRD分析 109 4.5.7摻雜不同含量鉬源對所得MowFe0.25-1g CTAB/NS4 (w= 0、0.25、0.5、0.75)薄膜其SEM、EDS分析 111 4.5.8摻雜不同含量鉬源對所得MowFe0.25-1g CTAB/NS4 (w= 0、0.25、0.5、0.75)薄膜其拉曼分析 114 4.5.9 Mo0.5Fe0.25-1g CTAB/NS4薄膜XPS表面元素組成分析 116 4.5.10 Mo0.5Fe0.25-1g CTAB/NS4薄膜用於整體水分解其LSV及CstC量測 119 第五章、結論 121 參考文獻 125

[1]人類面臨的最大能源挑戰是什麼?BBC英倫網 (2017)。
[2] 丁仁東.能源枯竭的告警. 科學教育月刊, (2010)。
[3]Jiajia Song, Chao Wei, Zhen-Feng Huang, Chuntai Liu, Lin Zeng, Xin Wang and
Zhichuan J. Xu. A review on fundamentals for designing oxygen evolution electrocatalysts.
Chemical Society Reviews, 49 (2020) 2196-2214.
[4] Nian-Tzu Suen, Sung-Fu Hung, Quan Quan, Nan Zhan , Yi-Jun Xu and Hao Ming Chen. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 46 (2017) 337-365.
[5] 林國興、林有銘、林俊男/工研院材化所,氫能發展的明日之星—水電解產氫,「工業材料雜誌」376期 (2018)。
[6] Xiumin Li, Xiaogang Hao, Abuliti Abudula and Guoqing Guan. Nanostructured catalists
for electrochemical water splitting:current status and prospects.Journal of Materials Chemistry A, 4 (2016) 11973-12000.
[7] Yingjie Li, Yingjun Sun, Yingnan Qin, Weiyu Zhang, Lei Wang, Mingchuan Luo, Huai Yang, Shaojun Guo. Guo Noble metal-based nanostructured materials mediated water splitting electrocatalysis research progress, Adv. Energy materials , 10 (2020) 1903120.
[8] Carlos G. Morales-Guio, Lucas-Alexandre Stern and Xile Hu. Nanostructured
hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society
Reviews, 43 (2014) 6555-6569.
[9] You Xu, Markus Kraft and Rong Xu. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chemical Society Reviews, 45 (2016) 3039-3052.
[10] BoTang, XudongYang, ZhenhuiKangbLigangFeng. Crystallized RuTe2 as unexpected bifunctional catalyst for overall water splitting. Applied Catalysis B: Environmental, 278 (2020) 119281.
[11] Fang Song, Lichen Bai, Aliki Moysiadou, Seunghwa Lee, Chao Hu, Laurent Liardet,
and Xile Hu. Transition metal oxides as electrocatalysts for the oxygen evolution reaction
in alkaline solutions: an application-inspired renaissance. Journal of the American Chemical Society, 140 (2018) 7748-7759.
[12] Lihua Zhang, Qun Fan, Kai Li, Sheng Zhang and Xinbin Ma. First-row transition metal oxide oxygen evolution electrocatalysts:regulation strategies and mechanistic understanding.
Sustainable Energy & Fuels, 4 (2020) 5417-5432.
[13] Xiang Huang, Jiong Wang, Hua Bing Tao, Hao Tian and Hu Xu. An essential descriptor for the oxygen evolution reaction on reducible metal oxide surfaces. Chemical science, 10 (2019) 3340-3345.
[14] Myeongjin Kim, Jinho Park Minsoo Kang, Jin Young Kim, Seung Woo Lee. Toward efficient electrocatalytic oxygen evolution: Emerging opportunities with metallic pyrochlore oxides for electrocatalysts and conductive supports. ACS Central Science, 6 (2020) 880-891.
[15] Ping Li and Hua Chun Zeng . Advanced oxygen evolution catalysis by bimetallic Ni–Fe phosphide nanoparticles encapsulated in nitrogen, phosphorus, and sulphur tri-doped porous carbon. Chemical Communications, 53 (2017) 6025-6028.
[16] Sundaram Chandrasekaran, Lei Yao, Libo Deng, Chris Bowen, Yan Zhang, Sanming Chen, Zhiqun Lin, Feng Peng and Peixin Zhang. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 48 (2019) 4178-4280.
[17] Mingjin Cui, Chunpeng Yang, Boyang Li, Qi Dong, Meiling Wu, Sooyeon Hwang,
Hua Xie, Xizheng Wang, Guofeng Wang, Liangbing Hu. High‐Entropy Metal Sulfide Nanoparticles Promise High‐Performance Oxygen Evolution Reaction. Advanced Energy Materials, 11 (2021) 2002887.
[18] Gengtao Fu and Jong-Min Lee. Ternary metal sulfides for electrocatalytic energy conversion. Journal of Materials Chemistry A, 7 (2019) 9386-9405.
[19] Geng Zhang, Yu-Shuo Feng, Wang-Ting Lu, Dan He, Cao-Yu Wang, Yong-Ke Li,
Xun-Ying Wang, and Fei-Fei Cao. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catalysis, 8 (2018) 5431-5441.
[20] Kai Wang, Bolong Huang, Fei Lin, Fan Lv, Minchuan Luo, Peng Zhou, Qiao Liu, Weiyu Zhang, Chao Yang, Yonghua Tang, Yong Yang, Wei Wang, Hao Wang, Shaojun Guo. Wrinkled Rh2P Nanosheets as Superior pH‐Universal Electrocatalysts for Hydrogen Evolution Catalysis. Advanced Energy Materials, 8 (2018) 1801891.
[21] Haohong Duan†, Dongguo Li, Yan Tang, Yang He,Shufang Ji, Rongyue Wang,Haifeng Lv, Pietro P. Lopes, Arvydas P. Paulikas, Haoyi Li, Scott X. Mao, Chongmin Wang, Nenad
M. Markovic, Jun Li, Vojislav R. Stamenkovic, and Yadong Li. High-performance Rh2P electrocatalyst for efficient water splitting. Journal of the American Chemical Society, 139 (2017) 5494-5502.
[22] Zhu Chen, Coleman X. Kronawitter and Bruce E. Koel. Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction. Physical Chemistry Chemical Physics, 17 (2015) 29387-29393.
[23] Mengjia Liu and Jinghong Li. Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS applied materials & interfaces, 8 (2016) 2158-2165.
[24]Sundaram Chandrasekaran , Lei Yao , Libo Deng , Chris Bowen , Yan Zhang ,
Sanming Chen , a Zhiqun Lin , Feng Peng and Peixin Zhang . Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and
photoelectrochemical water splitting and beyond. Chemical Society Reviews, 48 (2019) 4178-4280.
[25] Yichao Lin, Ziqi Tian, Linjuan Zhang, Jingyuan Ma, Zheng Jiang, Benjamin J. Deibert,
Ruixiang Ge & Liang Chen. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nature communications, 10 (2019) 1-13.
[26] Congling Hu, Lei Zhang and Jinlong Gong. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy & Environmental Science, 12 (2019) 2620-2645.
[27] Shan Wang, Aolin Lu & Chuan-Jian Zhong. Hydrogen production from water electrolysis:role of catalysts. Nano Convergence, 8 (2021) 1-23.
[28] Yingjie Li, Yingjun Sun, Yingnan Qin, Weiyu Zhang, Lei Wang, Mingchuan Luo, Huai Yang, Shaojun Guo. Recent advances on water‐splitting electrocatalysis mediated by noble‐metal‐based nanostructured materials. Advanced Energy Materials, 10 (2020) 1903120.
[29] Min Wang, Li Zhang, Yijia He and Hongwei Zhu. The latest development of dual-functional electrocatalysts based on transition metal sulfides for overall water splitting. Journal of Materials Chemistry A, 9 (2021) 5320-5363.
[30] Nan Jiang, Qing Tang, Meili Sheng, Bo You, De-en Jiang and Yujie Sun. Nickel sulfide for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2 and Ni3S2 nanoparticles. Catalysis Science and Technology, 6 (2016) 1077-1084.
[31] Xuerong Zheng, Xiaopeng Han, Yiqi Zhang, Jihui Wang, Cheng Zhong, Yida Deng and Wenbin H. Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting. Nanoscale, 11 (2019) 5646-5654.
[32] Jianfang Zhang, Yang Li, Tianyu Zhu, Yan Wang, Jiewu Cui, Jingjie Wu, Hui Xu, Xia Shu, Yongqiang Qin, Hongmei Zheng, Pulickel M. Ajayan, Yong Zhang, and Yucheng Wu*. 3D coral-like Ni3S2 on Ni foam as a bifunctional electrocatalyst for overall water splitting. ACS applied materials & interfaces, 10 (2018) 31330-31339.
[33] Zaki N. Zahran, Eman A. Mohamed, Yuta Tsubonouchia, Manabu Ishizaki, Takanari Togashi, Masato Kurihara, Kenji Saito, Tatsuto Yui and Masayuki Yagi.Electrocatalytic water splitting with unprecedentedly low overpotials by nickel sulfide nanowires stuffed into carbon nitride scabbards. Energy & Environmental Science. (2021) 10.1039/D1EE00509J
[34] Dongwook Lim Euntaek Oh Chaewon LimSang EunShimSung-HyeonBaeck. Fe-doped Ni3S2 nanoneedles directly grown on Ni foam as highly efficient bifunctional electrocatalysts for alkaline overall water splitting. Electrochimica Acta, 361 (2020) 137080.
[35] Taotao Gao, Caixia Zhou, Yajie Zhang, Zhaoyu Jin, Hongyan Yuan and Dan Xiao . (2018). Ultra-fast pyrolysis of ferrocene to form Fe/C heterostructures as robust oxygen evolution electrocatalysts.Journal of Materials Chemistry A, 6 (2018) 21577-21584.
[36] Corinne Arrouvel and Jean-Guillaume Eon. Understanding the surfaces and crystal growth of pyrite FeS2. Materials Research, (2018) 22.
[37] Desheng Kong, Judy J. Cha, Haotian Wang, Hye Ryoung Lee and Yi Cui. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy & Environmental Science 6 (2013) 3553-3558.
[38] Min Jie Wang , Xingqun Zheng, Lele Song, Xin Feng, Qiang Liao, Jing Li, Li Li and Zidong Wei. Fe3O4/FeS2 heterostructures enable efficient oxygen evolution reaction. Journal of Materials Chemistry A, 8 (2020), 14145-14151.
[39] Zhongcheng Li, Mengmin Xiao, Ying Zhou, Deliang Zhang, Hongzhen Wang, Xien Liu, Debao Wang and Wenpin Wang. Pyrite FeS2/C nanoparticles as an efficient bi-functional catalyst for overall water splitting. Dalton Transactions, 47 (2018) 14917-14923.
[40] Yinlong Zhu, Qian Lin, Yijun Zhong, Hassan A. Tahini, Zongping Shao and Huanting Wang. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts.Energy & Environmental Science, 13 (2020) 3361-3392.
[41] Wenqing Lu, Ye Song, Meiling Dou, Jing Ji and Feng Wang. Ni3S2@ MoO3 core/shell arrays on Ni foam modified with ultrathin CdS layer as a superior electrocatalyst for hydrogen evolution reaction. Chemical Communications, 54 (2018) 646-649.
[42] Ling Li, Ting Zhang, Junqing Yan, Xuediao Cai, Shengzhong Liu. P doped MoO3-x nanosheets as efficient and stable electrocatalysts for hydrogen evolution. Small, 13 (2017) 1700441.
[43] R. S. Datta, F. Haque, M. Mohiuddin, B. J. Carey, N. Syed, A. Zavabeti, B. Zhang, H. Khan ,K. J. Berean , J. Z. Ou , N. Mahmood, T. Daeneke and K. Kalantar-zadeh. Highly active two dimensional α-MoO3-x for the electrocatalytic hydrogen evolution reaction.
Journal of Materials Chemistry A, 5 (2017) 24223-24231.
[44] Jeng-Han Wang , Zhe Cheng, Jean-Luc Brédas, Meilin Liu. Electronic and vibrational properties of nickel sulfides from first principles. The Journal of chemical physics, 127 (2007) 214705.
[45] Nan Zhang, Junyu Lei, Jianpeng Xie, Haiyan Huang and Ying Yu. MoS2/Ni3S2 nanorod arrays well-aligned on Ni foam: a 3D hierarchical efficient bifunctional catalytic electrode for overall water splitting. RSC Advances, 7 (2017) 46286-46296.
[46] A. K. Kleppel and A. P. Jephcoat. High-pressure Raman spectroscopic studies of FeS2 pyrite. Mineralogical Magazine, 68 (2004) 433-441.
[47] MV Morales-Gallardo, A.M. Ayala, Mou Pal, M.A. Cortes Jacome. Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity. Chemical Physics Letters, 660 (2016) 93-98.
[48] Li Li, Pin Ma, Sabir Hussain, Lianjun Jia, Di Lin, Xiong Yin, Yuan Lin, Zhihai Cheng and Leyu Wang. (2019). FeS2/carbon hybrids on carbon cloth: a highly efficient and stable counter electrode for dye-sensitized solar cells. Sustainable Energy & Fuels, 3 (2019) 1749-1756.
[49] M. Dieterle, G. Weinberg and G. Mestl. Raman spectroscopy of molybdenum oxides Part I. Structural characterization of oxygen defects in MoO3-x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Physical Chemistry Chemical Physics, 4 (2002) 812-821.
[50] Hanjing Tian, Charles A. Roberts, and Israel E. Wachs. Molecular structural determination of molybdena in different environments: Aqueous solutions, bulk mixed oxides,and supported MoO3 catalysts. The Journal of Physical Chemistry C, 114 (2010) 14110-14120.

無法下載圖示 全文公開日期 2024/08/05 (校內網路)
全文公開日期 2024/08/05 (校外網路)
全文公開日期 2024/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE