簡易檢索 / 詳目顯示

研究生: 柳邦凱
Bang-kai Liu
論文名稱: 透輝石相玻璃陶瓷添加陶瓷粉體共燒之微波介電特性改善與研究
Improvement of microwave dielectric properties of diopside-based glass-ceramics using low temperature co-fired ceramic process
指導教授: 周振嘉
Chen-chia Chou
口試委員: 廖文照
Wen-jiao Liao
朱立文
Li-wen Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 112
中文關鍵詞: 低溫共燒陶瓷還原氣氛燒結玻璃陶瓷透輝石
外文關鍵詞: LTCC, reduced atmosphere, glass-ceramics, diopside
相關次數: 點閱:326下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將探討透輝石相玻璃陶瓷(CaMgSi2O6) 材料系統,以開發出具低介電常數 (low dielectric constant, k)、高品質因子值(high quality factor, Qxf) 和具低共振溫度頻率係數(Temperature coefficient of the resonance frequency, τf) 之微波介電陶瓷材料,且期望此材料系統可於氮氣下之較低工作溫度(≦1000oC) 和銅電極進行燒結。
    首先將先探討透輝石相玻璃陶瓷以不同粒徑氧化鋯(ZrO2) 做為成核劑,並分別經由大氣或氮氣二階段式熱處理後,其對於透輝石相玻璃陶瓷之結晶度和微波介電特性之影響。由其SEM/BEI、Rietveld 精算結晶度以及結晶動力學之分析結果可知,當透輝石相玻璃陶瓷以奈米粒徑ZrO2 做為成核劑相較於以微米粒徑ZrO2 做為成核劑時的成核數目明顯來得多,且其透輝石相的結晶度會提升3.40 wt%,結晶活化能值(Ea) 也會由548 kJ/mol 降低至497 kJ/mol,同時由其經大氣下960oC/2hrs 熱處理後之微波介電特性可發現,其因仍為透輝石相玻璃陶瓷與t-ZrO2 相為主,而並無其他二次相產生,因此其介電常數及τf 值乃介於一定範圍之間(k=7~8,τf=-60~-80 ppm/oC),且因透輝石相玻璃陶瓷材料系統之成核數目增加,會因較易產生結晶反應,而有助於其結晶度之提升,因此品質因子值(Qxf) 也會由9,391 GHz 提升至11,127 GHz。
    另外,為了改善其仍偏高之τf 值(-79ppm/oC),因此將再利用氮氣二階段式熱處理方式,並同時添加入正τf 值之CaTiO3 陶瓷粉體,以期望能有效改善τf 值。其微波介電特性結果顯示,介電常數介於8~10 之間,且因透輝石相玻璃陶瓷中所添加之微米粒徑ZrO2 改為奈米粒徑之ZrO2 做為成核劑時,因其結晶度之提升,因此有助於其品質因子值(Qxf) 由3,779 GHz 提升至5,136 GHz,同時τf 值也有所改善,由-45 ppm/oC 改善至-15 ppm/oC。但在此部分之氮氣二階段式熱處理過程中,若透輝石相玻璃陶瓷之預結晶成核溫度偏差±5oC 時,則其結晶性會大幅下降,此會使其微波介電特性大幅下降,所以在製程上較為繁瑣且需要非常謹慎。
    因此,本實驗將在透輝石相玻璃陶瓷中以奈米粒徑ZrO2 做為成核劑,並直接添加陶瓷粉體後,直接進行氮氣下960oC/2hr 之共燒熱處理,以期望簡化製程和得到更優良之微波介電特性。由其XRD 之分析結果可知,陶瓷體可穩定存在於透輝石相玻璃陶瓷中。同時,本實驗也推論,其亦可誘發透輝石相玻璃陶瓷之結晶性的提升。另外,本實驗也經由計算陶瓷的視燒結活化能後推論,陶瓷體是否可穩定存在於透輝石相玻璃陶瓷中的影響因素,與陶瓷的視燒結活化能大小無關。最後本實驗也發現,當透輝石相玻璃陶瓷同時添加陶瓷粉體經氮氣下960oC/2hr 之燒結熱處理後,可得到一組最佳之微波介電特性為k=9.3,Qxf=7,709 GHz,τf=-0.05 ppm/oC。


    In this study, diopside glass-ceramics (CaMgSi2O6) materials sintered in reduced atmosphere, which required a low dielectric constant (k), high quality factor (Q×f) and a near zero temperature coefficient of the resonance frequency (τf) as a microwave dielectric ceramic materials, were studied.
    Experimental results reveal that different size of zirconia nucleating agents added into MgO-CaO-2SiO2 system show not only increase of nucleating agents but also enhancement of crystallization in diopside glass-ceramics. Microstructural features demonstrated that large of ZrO2 nucleating agents precipitate in the matrix due to addition of nano particle size in the diopside system. Moreover, Rietveld refinement results show that specimens with nanometer ZrO2 addition reveal low amorphous content (29.33 wt%) than specimens added with micrometer ZrO2 (33.01 wt%), and activation energy of crystallization also decrease from 548 kJ/mol to 497 kJ/mol, indicating that nano nucleating agents added into diopside glass-ceramic could increase the crystallization. Therefore, quality factors increase from 9,391 GHz to 11,127 GHz due to high crystallization.
    Furthermore, diopside glass-ceramics added with appropriate ceramics and sintered in reduced atmosphere were also investigated. The appropriate ceramics reveal high Qxf and high positive τf, respectively. Experimental results reveal that diopside glass-ceramics added with appropriate ceramics show that appropriate ceramics addition would induce the high reactive crystallization in CaMgSi2O6 glass-ceramics. Therefore, diopside glass-ceramics added with appropriate ceramics sintered at 960oC in reduced atmosphere reveal k=9.3,Qxf=7,709 GHz and f=-0.05 ppm/oC application in LTCC process.

    中文摘要 I 英文摘要 III 總目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究目的 3 第二章 文獻回顧與原理 5 2.1 微波介電材料的發展 5 2.2 微波介電材料的原理 11 2.2.1 介電原理與性質 11 2.2.2 品質因子 14 2.2.3 共振頻率溫度係數 16 2.3 玻璃陶瓷結晶成長機制 18 2.3.1 玻璃的形成 18 2.3.2 玻璃陶瓷之製程 21 2.3.3 成核機制 22 2.3.3.1 均質成核 22 2.3.3.2 異質成核 24 2.3.3.3 結晶成長機制 25 2.3.3.4 熱處理控制成核與晶體成長 26 2.4 透輝石結構之介紹 28 2.5 Rietveld method 結晶度精算 31 2.5.1 Rietveld method 起源 31 2.5.2 Rietveld method 基本原理 32 2.5.3 Rietveld method 之計算方法 32 2.5.4 Rietveld method 之應用 35 2.6 結晶活化能 36 2.7 主導燒結曲線模型之介紹 38 2.7.1 主導燒結曲線模型 38 2.7.2 主導燒結曲線模型之推導過程 41 2.7.3 主導燒結曲線模型之假設 42 2.7.4 主導燒結曲線之應用 43 第三章 實驗流程與分析方法 45 3.1 實驗流程 45 3.2 實驗儀器與規格 54 3.3 材料性質量測方法 55 3.3.1 SEM/BEI 微觀分析 55 3.3.2 XRD 與Rietveld 法之結晶度分析 55 3.3.3 結晶活化能量測分析 56 3.3.4 視燒結活化能之量測方法 56 3.3.5 品質因子與介電常數量測 59 3.3.6 共振溫度頻率係數量測 61 第四章 結果與討論 62 4.1 透輝石相玻璃陶瓷以不同粒徑ZrO2做為成核劑之分析結果 62 4.1.1 微米粒徑與奈米粒徑之ZrO2粒徑分析 62 4.1.2 透輝石相玻璃陶瓷以不同粒徑ZrO2做為成核劑之SEM/BEI 分析 64 4.1.3 透輝石相玻璃陶瓷以不同粒徑ZrO2做為成核劑Rietveld精算結晶度分析 66 4.1.4 透輝石相玻璃陶瓷以不同粒徑ZrO2做為成核劑之結晶動力學分析 69 4.1.5 透輝石相玻璃陶瓷以不同粒徑ZrO2做為成核劑經大氣或氮氣二階段式熱處理之微波介電特性分析 71 4.2 透輝石相玻璃陶瓷與陶瓷經氮氣下共燒之特性研究 75 4.2.1透輝石相玻璃陶瓷分別添加Mg2SiO4、(Zn0.6Mg0.4)2SiO4、CaTiO3陶瓷之XRD分析 79 4.2.2Mg2SiO4、CaTiO3、(Zn0.6Mg0.4)2SiO4陶瓷之視燒結活化能分析 83 4.2.3透輝石相玻璃陶瓷與陶瓷共燒之微波介電特性分析 85 第五章 結論 88 參考文獻 91

    1. R. J. Cava, “Dielectric materials for applications in microwave Communication.” Journal of Materials Chemistry., 11, 54-62, 2001.
    2. J. Wan, “Design of a 5.305 GHz dielectric resonator oscillator with simulation and optimization.” Journal of Electronic Science and Technology of China., 6, 342-345, 2008.
    3. J. Krupka, “Extremely high-Q factor dielectric resonators for Millimeter-wavapplications.” IEEE Transactions on Microwave theory and Techniques., 53, 702-712, 2005.
    4. I. Nicolaescu, A.Ioachim, I. Toacsan, I. Radu, and G. Banciu, “High k materials used to manufacture miniaturized dielectric antennas for military applications.” Journal of Optoelectronics and Advanced Materials., 9, 3592-3597, 2007.
    5. C. C. Chiang, S. F. Wang, Y. R. Wang, W. Cheng and J. Wei,“Densification and microwavedielectric properties of CaO-B2O3-SiO2 system glass-ceramics.” Ceramics International., 34, 599-604, 2008.
    6. M. T. Sebastian and H. Jantunen, “Low loss dielectric materials for LTCC Applicatio-ns: a review.” International Materials Reviews., 53, 57-90, 2008.
    7. 劉賾銘,“低介電之透輝石相玻璃陶瓷的合成及應用於LTCC氮氣製程下品質因子改善之研究”,國立台灣科技大學碩士論文,中華民國100年。
    8. 莊舜傑,“二次熱處理與鈦酸鈣添加對透輝石玻璃陶瓷微波介電材料的燒結與特性影響”,國立台灣科技大學碩士論文,中華民國101年。
    9. J. M. Osepchuk, “A History of Microwave Heating Applications.” IEEE Trans.” Microwave Theory & Tech., 9, 1200-1224, 1984.
    10. R. D. Richtmyer,“Dielectric Resonator”,Japanese Journal of Applied Physics.” Japanese Journal of Applied Physics., 10, 391-398, 1939.
    11. A. Okaya, “The Rutile Microwave Resonator.” Proc. IRE., 45, 1921, 1960.
    12. H. M. O’Bryan, “A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss.” J. Thomson and J.K. Plourde, Journal of American Ceramic Society.,57, 450-453, 1974.
    13. M. H.Weng and C.L.Huang, “Single Phase Ba2Ti9O20 Microwave dielectric Ceramics prepared by low temperature liquid phase Sintering.” Japanese Journal of Applied Physics., 39, 3528-3529, 2000.
    14. M. H. Weng, T. J. Liang and C. L. Huang, “Lowering of sintering temperature and Microwave dielectric properties of BaTi4O9 ceramics prepared by the Polymeric precursor method.” Journal of the European Ceramic Society., 22, 1693-1698, 2002.
    15. S. Kawashima, M. Nishida, I. Ueda and H. Ouchi, “Dielectric Properties at Microwave Frequencies of the Ceramics in the BaO-Sm2O3-TiO2System.” The American Ceramic Society., 15-E-85, 1985.
    16. P. C. Osbond, R. W. Whatmore and F. W. Alinger, “The Properties and Microwave Application of Zirconium Titanate Stannate Ceramics.” Brit. Ceram. Proc., 36, 167-178, 1985.
    17. T. Yamaguchi, Y. Komatsu, T. Otobe and Y. Murakami,“Newly Developed Ternary(CaSr、Ba) Zirconate Ceramic System for Microwave Resonators.” Ferroelectrics., 27, 273-276, 1980.
    18. A. Ioachim, M. I. Toacsan, L. Nedelcu, M. G. Banciu, C. A. Dutu, E. Andronescu and S. Jinga,“Thermal Treatments Effects on Microwave Dielectric Properties of Ba(Zn1/3Ta2/3)O3 Ceramics.” Romanian Journal of Information Science and Technology., 10, 261-268, 2007.
    19. M. Takata and K. Kageyama, “Microwave Characteristies of A(B3+1/2B5+1/2)O3 Ceramics(A=Ba,Ca,Sr;B3+=La,Nd,Sm,Yb;B5+=Nb,Ta).” Journal of American Ceramic Society., 72, 1955-1959, 1990.
    20. J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi and S. Nahm,“Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics.” Journal of the European Ceramic Society., 30, 375-379, 2010.
    21. J. Y. Ha, J. W. Choi, S. J. Yoon, D. J. Choi, K. H. Yoon and H. J. Kim,“Microwave dielectric properties of Bi2O3-doped Ca[(Li1/3Nb2/3)1-xTix]O3 Ceramics.” Journal of the European Ceramic Society., 23, 2413-2416, 2003.
    22. M. R. Joung, J. S. Kim, M. E. Song, S. Nahm and J. H. Paik,“Microstructure and Microwave dielectric properties of the Li2CO3-Added Sr2V2O7 Ceramics.” Journal of American Ceramic Society., 93, 2132-2135, 2010.
    23. R. Lebourgeoisa, S. Dugueyb, J. P. Gannea and J. M. Heintz,“Influence of V2O5 on the magnetic properties of nickel-zinc-copperferrites.” Journal of Magnetism and Magnetic Materials., 312, 328-330, 2007.
    24. S. F. Wang, Thomas C. K. Yang, Y. R. Wang and Y. Kuromitsu,“Effect of Glass composition on the densification and dielectric properties of BaTiO3 ceramic.” Ceramics International., 27, 157-162, 2001.
    25. Q. L. Zhang, H. Yang and J. X. Tong,“Low-temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5.” Material Letters., 60, 1188-1191, 2006.
    26. Y. Imanka and N. Kamehara,“Influence of shrinkage mismatch between copper and ceramics on dimensional control of the multilayer ceramic circuit board.” Journal of American Ceramic Society., 100, 558-561, 1992.
    27. J. I. Steinberg, S. J. Horowitz and R. J. Bacher,“Low-temperature co-fired tape dielectric material systems for multilayer interconnections, advances in ceramic.” Journal of American Ceramic Society., 31-39, 1986.
    28. J. J. Jean and Y. C. Fang,“ Devitrification kinetics and mechanism of K2O-CaO-SrO-BaO-B2O3-SiO2 glass-ceramic.” Journal of American Ceramic Society., 84, 1354–1360, 2001.
    29. S. X. Dai, R. F. Huang and D. L.,“Use of titanates to achieve a temperature -stable low-temperature co-fired ceramic dielectric for wireless application.” Journal of American Ceramic Society., 85, 828-832, 2002.
    30. B. Li, B. Tang, S. Zhang and H. Jiang,“Low-temperautre sintered (ZnMg)2SiO4 microwave ceramics with TiO2 addition and calcium borosilicate glass.” Journal Ceramics-Silikáty., 55, 14-19, 2011.
    31. R. R. Tummala,“Ceramic and glass-ceramic packaging in the 1990s.” Journal of American Ceramic Society., 74, 895-908, 1991.
    32. C. R. Chang and J. J. Jean,“Crystallization kinetics and mechanism of low dielectric, low-temperature, cofirable CaO-B2O3-SiO2 glass-ceramics.” Journal of American Ceramic Society., 82, 1725-1732, 1999.
    33. H. Jantunen, R. Rautioaho, A. Uusim¨aki and S. Lepp¨avuori,“Compositions of MgTiO3-CaTiO3 ceramic with two borosilicate glasses for LTCC technology.” Journal of the European Ceramic Society., 20, 2331-2336, 2000.
    34. R. Umemura, H. Ogawa, H. Ohsato, A. Kan and A. Yokoi,“Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic.” Journal of the European Ceramic Society., 25, 2865-2870, 2005.
    35. R. Umemura, H. Ogawa, H. Ohsato and A. Kan,“Low-temperature sintering microwave dielectric properties relations in Ba3(VO4)2 ceramic.” Journal of Alloys and Compounds., 424, 388-393, 2006.
    36. J. J. Bian, D. W. Kim and K. S. Hong,“Glass-free LTCC microwave dielectric ceramics.” Materials Research Bulletin., 40, 2120-2129, 2005.
    37. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida and H.Sugiura, Key Engineering Materials.,“Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics.” 269, 199-202, 2004.
    38. M. E. Song, J. S. Kim, M. R. Joung and S. Nahm,“Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics.” Journal of American Ceramic Society., 91, 2747-2750, 2008.
    39. Q. L. Zhang, H. Yang and H. P. Sun,“A new microwave ceramic with low-permittivity for LTCC applications.” Journal of the European Ceramic Society., 28, 605-609, 2008.
    40. Umayahara, “Glass Ceramics Dielectric Material and Sintered Glass Ceramics.” Pat. 6649550, 2003.
    41. C. L. Huang, M. H. Weng, “Improved high q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature.” Materials Research Bulletin., 36, 2741-2750, 2001.
    42. Y. Guo, H. Ohsato and K. Kakimoto, “Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency.” Journal of the European Ceramic Society., 26, 1827-1830, 2006.
    43. S. Nahmw, N. H. Nguyen, J. B. Lim, J. H. Paik and J. H. Kim, “Effect of Zn/Si Ratio on the Microstructural and Microwave Dielectric Properties of Zn2SiO4 Ceramics.” Journal of American Ceramic Society., 90, 3127-3130, 2007.
    44. X. M. Chen, K. X. Song and C. W. Zheng, “Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system.” Ceramics International., 34, 917-920, 2008.
    45. Vernon John著,蔡希杰譯,工程材料基礎篇第三版,俊傑書局股份有限公公司,2001。
    46. W. D. Kingery, H. K. Brown and D. R. Uhlmann, “Introduction to Ceramics.” Academic Press, John Wiley & Sons, 1975.
    47. 李俊遠,GPS微波介電材料與GPS天線設計概念,電子與材料雜誌,第14期。
    48. Kingery. Bowen. Uhlmann 著,陳皇鈞譯,陶瓷材料概論(下冊),曉園出版,1988.
    49. 吳朗,電子陶瓷-介電陶瓷,全欣出版,中華民國83年。
    50. 吳朗,電子陶瓷-絕緣陶瓷,全欣出版,中華民國83年。
    51. 陳文照,廖金喜,蔡明雄,蔡丕樁,材料科學與工程(第三版),全華圖書,1996。
    52. 汪建民主編,陶瓷技術手冊(下),中華民國粉末冶金協會,1994。
    53. T. I. Barry, J. M. Cox and R. Morrell,“Cordierite glass-ceramics-effect of TiO2 and ZrO2 content on phase sequence during heat treatment.” Journal of Materials Science, 13, 594-610, 1978.
    54. W. Holand, V. Rheinberger and M. Schweiger, “Control of nucleation in glass ceramics.” Phil. Trans. R. Soc. Lond., 361, 575-589, 2003.
    55. N. M. Chairman, “Nomenclature of pyroxenes.” Canadian Mineralogist., 27, 143-156, 1989.
    56. 王守誠,“澎湖群島斜輝石偉晶之化學特性在岩漿演化之應用”,國立成功大學碩士論文,中華民國96年。
    57. R. D. Shannon and C. T. Prewitt, “Effective Ionic Radii in Oxides and Fluorides.” Acta Cryst., B25, 925, 1969.
    58. P. Hudon, I. H. Jung and D. R. Baker, “Experimental Investigation and Optimization of Thermodynamic Properties and Phase Diagrams in the Systems CaO-SiO2,MgO-SiO2, CaMgSi2O6-SiO2 and CaMgSi2O6-Mg2SiO4 to 1.0 GPa.” Journal of Petrology., 46, 2005.
    59. W. A. Deer, R. A. Howie and J.Zussman 著,謝宇平、李鴻超、賀義興等譯校《造岩礦物﹐二卷A.單鏈矽酸鹽》(第二版)﹐地質出版社﹐北京﹐1983。
    60. 陳炳元,“利用Rietveld method測定(La1-XNdX)0.7Sr0.3MnO3系統的結構並探討結構與磁性的關係”,國立清華大學碩士論文,中華民國88年。
    61. Le Galley, “Type of Geiger-Muller counter suitable for the measurement of diffracted Mo Kat X-rays.” Rev. Sci. Instrum., 6, 279-283, 1935.
    62. H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures.” J.Appl. Crysta., 2, 65, 1969.
    63. R. P. Hunt, “A magnetoresistive readout transducer.” IEEE Tran. Magn, 70, 150, 1971.
    64. M. N. Baibich, J. M. Broto and A. Fert, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices.” Phys. Rev. Lett., 61, 2472, 1988.
    65. G. H. Jonker and J. H. Van Santen, “Ferromagnetic compounds of manganese with perovskite structure.” Physical., 16, 337, 1950.
    66. Ch. Baerlocher, Proc. 6th Int. Zeolite Conf., Reno, USA, Butterworth Ldondon, 1984.
    67. C. R. Chang, and J. J. Jean, “Crystallization kinetics and mechanism of low dielectric, low-temperature, cofirable CaO–B2O3–SiO2 glass–ceramics.” Journal of American Ceramic Society., 82, 1725-1732, 1999.
    68. J. J. Jean and Y. C. Fang,“Devitrification kinetics and mechanism of K2O-CaO-SrO-BaO-B2O3-SiO2 glass-ceramic.” Journal of American Ceramic Society., 84, 1354-1360, 2001.
    69. H. E. Kissinger, “Variation of peak temperature with heating rate in differential thermal analysis.” Journal of Research of the National Bureau of Standards., 57, 217-221, 1956.
    70. 吳慶豐,“氧化鋁陶瓷之主導燒結曲線研究”,國立台灣大學碩士,中華民國87年。
    71. G. C. Kuczynski, “Self-Diffusion in Sintering of Metallic Particles.” Trans. Am. Inst. Mining Met. Eng., 185, 169-178. 1949.
    72. W. D. Kingery and M. Berg, “Study of Initial Stages of Sintering Solids by Viscous Flow, Evaporation-Condensation, and Self-Diffusion.” J. Appl. Phys., 26, 1205-1212, 1955.
    73. R. L. Coble, “Sintering of Crystalline Solids I: Intermediate and Final Stage Diffusion Models.” J. Appl. Phys., 32, 787-792, 1961.
    74. D. L. Johnson, “New Methods of Obtaining Volume, Grain-boundary, and Surface Diffusion Coefficients from Sintering Data.” J. Appl. Phys., 40, 192-200. 1969.
    75. G. N. Hassold, I. W. Chen and D. J. Srolovitz, “Computer-Simulation of Final-Stage Sintering: Ⅰ. Model, Kinetics, and Microstructure.” J. Am. Ceram. Soc., 73, 2857-2864, 1990.
    76. I. W. Chen, G. N. Hassold and D. J. Srolovitz, “Computer-Simulation of Final-Stage Sintering: Ⅱ. Influence of Initial Pore-Size.” J. Am. Ceram. Soc., 73, 2865-2872, 1990.
    77. W. J. Soppe, G. J. M. Janssen, B. C. Bonekamp, L. A. Correia and H. J. Veringa, “A Computer-Simulation Method for Sintering in 3-Dimensional Powder Compacts.” J. Mater. Sci., 29, 754-761, 1994.
    78. M. F. Ashby, “A First Report on Sintering Diagrams.” Acta. Metall., 22, 275-289, 1974.
    79. R. T. DeHoff, “A Cell Model for Microstructural Evolution during Sintering.” Materials Science Research., 16, 23-34, 1984.
    80. D. L. Johnson, “Comment on Temperature-Gradient-Driven Diffusion in Rapid-Rate Sintering.” J. Am. Ceram. Soc., 73, 2576-2578, 1990.
    81. D. L. Johnson, “Ultra-Rapid Sintering of Ceramics.” Science of Sintering, 497, 1989.
    82. J. D. Hansen, R. P. Rusin, M. H. Teng and D. L. Johnson, “Combined Stage Sintering Model.” J. Am. Ceram. Soc., 75, 1129-1135, 1992.
    83. D. L. Johnson, R. P. Rusin and J. D. Hansen, “Application of a New Sintering Model.” Advances in Powder Metallurgy and Particulate Materials., 3, 17-24, 1992.
    84. J. Wang and R. Raj, “Estimate of the Activation Energy for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina and Alumina Doped with Zirconia or Titania.” J. Am. Ceram. Soc., 73, 1172-1175, 1990.
    85. M. Y. Chu, M. N. Rahaman, L. C. De Jonghe and R. J. Brook, “Effect of Heating Rate on Sintering and Coarsening.” J. Am. Ceram. Soc., 74, 1217-1125, 1991.
    86. H. Su and D. L. Johnson, “Master Sintering Curve: a Practical Approach to Sintering.” J. Am. Ceram. Soc., 79, 3211-3217, 1996.
    87. H. Su and D. L. Johnson, “A Practical Approach to Sintering.” The American Ceramic Society Bulletin, 76, 72-76, 1997.
    88. T. S. Yeh and M. D. Sacks, “Effect of Green Microstructure on Sintering of Alumina.” Ceramic Transactions., Vol. 7, 309-331, 1990.
    89. M. N. Rahaman, L. C. De Jonghe and M. Y. Chu, “Effect of Green Density on Densification and Creep During Sintering.” J. Am. Ceram. Soc., 74, 514-519, 1991.
    90. T. K. Gupta, “Possible Correlation Between Density and Grain Size During Sintering.” J. Am. Ceram. Soc., 55, 276-277, 1972.
    91. R. P. Rusin, “Sintering of Nickel Powder with or without Dispersed Alumina Particles.” Ph.D. Dissertation, Northwestern University, Evanston, IL, 1993.
    92. H. Su and D. L. Johnson, “Sintering of Alumina in a Microwave-Induced Oxygen Plasama.” J. Am. Ceram. Soc., 79, 3199-3210, 1996.
    93. A. J. Allen, G. G. Long and S.Krueger, “The Microstructure of Nanophase and mm-Grain Ceramics During Sintering.” The American Ceramic Society., 29-95, 1995.
    94. D. J. Chen and M. J. Mayo , “Rapid Sintering of Nanocrystalline ZrO2-3 mol% Y2O3.”J. Am. Ceram. Soc., 79, 906-912, 1996.
    95. R. M. Cannon and R. L. Coble, “Review of Diffusional Creep of Al2O3.” Deformation of Ceramic Materials., 81-100, 1975.
    96. S. Prochazka and R. L. Coble, “Surface Diffusion in the Initial Sintering of Alumina.” Phys. Sintering., 2, 1-34, 1970.
    97. M. P. Harmer and R. J. Brook, “Fast Firing─Microstructure Benefits.”J. Br. Ceram. Soc., 80, 147-148, 1981.
    98. D. L. Johnson, “Ultra-Rapid Sintering.”Material Science Research., 16, 243-252, 1984.
    99. T. Quadir and D. W. Ready, “Microstructure Evolution in SnO2 and CdO in Reducing Atmosphere.” Material Science Research., 16, 159-171, 1984.
    100. J. Lee and D. W. Ready, “Microstructure Evolution in Fe2O3 in HCl Vapor.” Material Science Research., 16, 145-157, 1984.
    101. A. Young, “A Rietveld program for quantitative phase analysis of polycrystalline mixtures”. The Rietveld Method. Oxford Science Publications., 1993.
    102. K. Yasukawa, Y. Terashi and A. Nakayama, “Crystallinity Analysis of Glass-Ceramics by the Rietveld Method.” Journal of American Ceramic Society., 81, 2978-2982, 1998.
    103. K. C. Feng, C. Y. Lina, C. C. Chou and L. W. Chu, “Effect of Particle Size on Crystallization and Microwave Dielectric Characteristics of CaMgSi2O6 Glass-Ceramics.” Ferroelectrics., 435, 91-97, 2012.
    104. A. Goel, A. A. Reddy, M. J. Pascual, L. Gremillard, A. Malchere and J. M. F. Ferreira, “Sintering behavior of lanthanide-containing glass-ceramic sealants for solid oxide fuel cells.” Journal of Materials Chemistry., 22, 10042-10054, 2012.
    105. S. Bhattacharyya and T. Höche, “Design of oxy-fluoride glass-ceramics containing NaLaF4 nano-crystals.” Crystal Growth Design., 10, 379-385, 2010.
    106. S. Kemethmüller, A. Roosen, F. Goetz-Neunhoeffer and J. Neubauer, “Quantitative Analysis of Crystalline and Amorphous Phases in Glass–Ceramic Composites Like LTCC by the Rietveld Method.” Journal of American Ceramic Society., 89, 2632-2637, 2006.
    107. FIZ Karlsruhe International Crystal Structure Data (ICSD)., Karlsruhe, Germany, 2000.
    108. A. Kern, “Hochtemperatur-Rietveldanalysen: Möglichkeiten und Grenzen.”Heidelberger Geowiss Abh., 89, 323, 1998.
    109. R. F. Speyer, “Thermal Analysis of Materials.” Marcel Dekker, 1994.
    110. K. C. Feng, C. C. Chou, C. S. Chen, L. W. Chu and H. Chen, “Phase evolution and electrical properties of copper-electroded BaTi4O9 materials with BZBS glass system in reducing atmosphere.” Ceramics International., 39, 321-324, 2013.
    111. E. R. Segnit and A. E. Holland, “The System MgO‐ZnO‐SiO2.” J. Am. Ceram. Soc., 48, 409-413, 1965.
    112. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics.” Wiley & Sons, 947-950, 1975.

    無法下載圖示 全文公開日期 2016/07/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE