簡易檢索 / 詳目顯示

研究生: Fayruz Rahma
Fayruz - Rahma
論文名稱: RODBU+: A Security Design for RODBU
RODBU+: A Security Design for RODBU
指導教授: 馮輝文
Huei-Wen Ferng
古鴻炎
Hung-Yan Gu
口試委員: 黎碧煌
Bih-Hwang Lee
吳中實
Jung-Shyr Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 26
中文關鍵詞: RODBUsecuritynetwork mobility
外文關鍵詞: network mobility, security, RODBU
相關次數: 點閱:170下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

NEtwork MObility (NEMO) is a technology which supports Internet connectivity of the nodes in a mobile network. NEMO Basic Support Protocol (NEMO BSP) has inefficiency issue due to Pinball Routing problem. One of the solutions is Route Optimization using Distributed Binding Update (RODBU) for nested mobile networks. Security aspect is not considered in the original RODBU even though this protocol looks promising for implementation. To make RODBU can be implemented in the real world, some changes need to be done and security should be added to protect the network. Thus, this paper proposes message flow enhancements and security schemes to protect the practice of RODBU, such as key distribution, node registration authentication, and security for control messages. Some analyses have been carried out to prove the strength and lightness of RODBU+.


NEtwork MObility (NEMO) is a technology which supports Internet connectivity of the nodes in a mobile network. NEMO Basic Support Protocol (NEMO BSP) has inefficiency issue due to Pinball Routing problem. One of the solutions is Route Optimization using Distributed Binding Update (RODBU) for nested mobile networks. Security aspect is not considered in the original RODBU even though this protocol looks promising for implementation. To make RODBU can be implemented in the real world, some changes need to be done and security should be added to protect the network. Thus, this paper proposes message flow enhancements and security schemes to protect the practice of RODBU, such as key distribution, node registration authentication, and security for control messages. Some analyses have been carried out to prove the strength and lightness of RODBU+.

Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Notation and Abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 The RODBU Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Security in NEMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 The Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 Key Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 The Enhanced Handover Scheme of RODBU . . . . . . . . . . . . . . . 8 3.2.1 Intra-domain Handover . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.2 Inter-domain Handover . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.3 Root-MR Handover . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Node Registration Authentication . . . . . . . . . . . . . . . . . . . . . 11 3.4 Security of Control Message . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4.1 Local Binding Update . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.2 Registration Binding Update . . . . . . . . . . . . . . . . . . . . 16 3.4.3 Distributed Binding Update . . . . . . . . . . . . . . . . . . . . 16 3.4.4 Handover Binding Update . . . . . . . . . . . . . . . . . . . . . 17 3.4.5 Routing Table Deregistration . . . . . . . . . . . . . . . . . . . . 17 3.4.6 Subtree List Deregistration . . . . . . . . . . . . . . . . . . . . . 17 4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 General Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Analysis of Key Distribution . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Analysis of Node Registration Authentication . . . . . . . . . . . . . . . 21 4.4 Analysis of Communication Payload Size . . . . . . . . . . . . . . . . . 22 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

[1] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, “RFC 3963: Network Mobility (NEMO) Basic Support Protocol,”
January 2005.
[2] T. Ernst and H.-Y. Lach, “RFC 4885: Network Mobility Support Terminology,” tech. rep., Internet Engineering Task Force, July
2007.
[3] D. Johnson, C. Perkins, and J. Arkko, “RFC 3775: Mobility Support in IPv6,” June 2004.
[4] H.-W. Ferng and T. Laksmono, “Route optimization using the distributed binding update for nested mobile networks,” Wirel.
Commun. Mob. Comput., p. n/a–n/a, Oct 2012.
[5] P. Thubert and M. Molteni, “IPv6 Reverse Routing Header and its application to Mobile Networks,” tech. rep., Internet Engineering
Task Force, August 2007.
[6] M. S. Jeong, Y. H. Cho, and J. T. Park, “Hierarchical mobile network binding scheme for route optimization in NEMO,” Wireless
Personal Communications, vol. 43, p. 975–995, Oct 2007.
[7] M. Y. Abdelsalam, R. A. Saeed, and R. A. Alsaqour, “The Effect of Route Routability Procedure to the Route Optimization
Distribution Binding Update,” 2013.
[8] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach (6th Edition). Pearson, 2012.
[9] N. Ferguson and B. Schneier, “A Cryptographic Evaluation of IPsec,” tech. rep., Counterpane Internet Security, Inc., 2000.
[10] N. Toledo, M. Higuero, J. Astorga, M. Aguado, and J. M. Bonnin, “Design and formal security evaluation of NeMHIP: A new
secure and efficient network mobility management protocol based on the Host Identity Protocol,” Computers & Security, vol. 32,
p. 1–18, Feb 2013.
[11] T.-C. Chen, J.-C. Chen, and Z.-H. Liu, “Secure Network Mobility (SeNEMO) for Real-Time Applications,” IEEE Transactions
on Mobile Computing, vol. 10, no. 8, p. 1113–1130.
[12] R. V. Raju, A. K. Dahiya, K. Garg, and S. Maheshwari, “A new hybrid cryptosystem for Binding Update in NEMO,” 2013 IEEE
International Conference in MOOC, Innovation and Technology in Education (MITE), 2013.
[13] L.-Y. Yeh, C.-C. Yang, J.-G. Chang, and Y.-L. Tsai, “A secure and efficient batch binding update scheme for route optimization
of nested NEtwork MObility (NEMO) in VANETs,” Journal of Network and Computer Applications, vol. 36, p. 284–292, Jan
2013.
[14] J. ZHANG, Y.-a. LIU, X.-l. MA, and J.-t. JIA, “AAA authentication for network mobility,” The Journal of China Universities of
Posts and Telecommunications, vol. 19, p. 81–86, Apr 2012.
[15] P. Georgopoulos, B. McCarthy, and C. Edwards, “A Collaborative AAA Architecture to Enable Secure Real-World Network
Mobility,” Lecture Notes in Computer Science, p. 212–226, 2011.
[16] J. S. Moon, S. H. Lee, I.-Y. Lee, and S.-G. Byeon, “Authentication Protocol Using Authorization Ticket in Mobile Network
Service Environment,” 2010 3rd International Conference on Human-Centric Computing, 2010.
[17] C. Bauer, “NEMO route optimization with strong authentication for aeronautical communications,” 2011 IEEE 22nd International
Symposium on Personal, Indoor and Mobile Radio Communications, 2011.
[18] T. K. Tan and A. Samsudin, “Fast and simple NEMO authentication via random number,” 2007 IEEE International Conference
on Telecommunications and Malaysia International Conference on Communications.

QR CODE