簡易檢索 / 詳目顯示

研究生: 紀凱甯
Kai-Ning Chi
論文名稱: 高強度螺紋節鋼筋於鋼筋混凝土之握裹行為研究
Study on Bond Behaviors of High-Strength Threaded Bars in Reinforced Concrete
指導教授: 邱建國
Chien-Kuo Chiu
林克強
Ker-Chun Lin
口試委員: 黃世建
Shyh-Jiann Hwang
歐昱辰
Yu-Chen Ou
廖文正
Wen-Cheng Liao
邱建國
Chien-Kuo Chiu
鄭敏元
Min-Yuan Cheng
王勇智
Yung-Chih Wang
林克強
Ker-Chun Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 192
中文關鍵詞: 高強度鋼筋混凝土螺紋節鋼筋握裹強度鋼筋表面幾何特性鋼筋直線拉力伸展長度
外文關鍵詞: high-strength reinforced concrete, threaded bars, bonding performance, surface geometry characteristic of threaded bars, straight development lengths in tension for threaded bars
相關次數: 點閱:339下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

「台灣新型高強度鋼筋混凝土結構研發」整合型計畫積極致力於研發本土化之高強度鋼筋混凝土材料在高層建築結構上之應用,在材料強度規劃上,混凝土抗壓強度採用70 MPa至100 MPa,縱向鋼筋與橫向鋼筋強度上限則分別為降伏強度690 MPa與790 MPa,兩者皆已超過現行規範之材料強度上限。另外基於高強度鋼筋含碳量高之特性,不利採用彎曲或銲接加工,因此特別高強度鋼筋之表面宜採用螺紋節形式,以利搭配螺紋型續接套筒或擴頭端部套筒於高強度鋼筋混凝土構件中進行鋼筋續接與端部錨定。
本研究為了解高強度螺紋節鋼筋與高強度混凝土之握裹行為,共計進行66組鋼筋直線握裹試驗,除探討螺紋節鋼筋表面幾何特性、材料強度及影響鋼筋直線握裹性能等因素外,亦提出適當的螺紋節鋼筋直線拉力發展長度設計模型,並建議合理且符合握裹應力需求的節高與節距比值限制。根據握裹試驗觀察發現,握裹破壞模式可分為拉拔與劈裂破壞兩種形式。另外,亦根據實驗結果歸納出三項影響混凝土表面劈裂之可能因素:混凝土保護層與鋼筋直徑之比值大於4.0、混凝土兩側保護層比值之差值大於0.7,及混凝土之劈裂指數大於4.35。
試驗之分析結果顯示,本研究之螺紋節鋼筋均能達到符合ACI 318-14規範預期之握裹性能;然而,當混凝土強度不受ACI 318-14之70 MPa上限約束時,唯有表面Rr值大於0.17之螺紋節鋼筋方可滿足計算需求,且混凝土有效計算強度可適當提升至100 MPa。鋼筋表面幾何尺寸方面,螺紋節鋼筋表面節高與節距之比值是影響鋼筋握裹性能之重要因素,且鋼筋握裹性能伴隨表面節高與節距比值之增加而提升。最終,本文亦分別提出適用於螺紋節鋼筋直線拉力伸展長度計算之詳細式與精簡式,其鋼筋與混凝土之有效計算強度上限可放寬至690 MPa與100 MPa。


The Integrated Project of “Taiwan New RC Project” was launched to develop the high-strength reinforcements and concrete, 690~790 MPa and 70~100 MPa, respectively by the NCREE (National Center for Research on Earthquake Engineering). These high-strength materials exceed the upper limitations of strengths in existing codes. However, the high-strength characteristic of reinforcements are adverse to be bent and welded due to their high equivalent-carbon-content. Therefore, a surface type of thread of reinforced bar are adopted. The threaded-type reinforcement is able to easily install mortar-injected threaded splice sleeve and mortar-injected threaded end-anchor device for splice and end-anchor of reinforcement, respectively, and to replace the traditional lap splice and hooked or welded anchorage, respectively.
This work focuses the bond behavior between high-strength threaded bars and concrete by using 66 groups of straight bonding tests to investigate the surface geometry characteristic of threaded bars, material strengths and bonding factors. Additionally, this study proposes the appropriate surface geometry properties and design models for straight development lengths of threaded bars in tension. According to the experimental observations, the failure modes can be divided into two forms, pullout and splitting. Furthermore, there are three possible parameters influencing the surface of concrete non-splitting: the ratio of the concrete cover to the diameter of bonded bars over 4.0, the ratio of the difference between two side covers over 0.7, and the splitting indexes of concrete over 4.35.
The test results show that when the concrete strength is limited to 70 MPa by ACI 318-14 recommendations, all sets of threaded bars can provide the expected bond strengths. However, when the concrete strength is not limited to 70 MPa, only the threaded bars with relative rib area exceeding 0.17 can provide the expected bond strengths. In addition, the correlation between relative rib area Rr and the effectiveness of the bonding performance is approximately perfect. Finally, this study also provides the detailed and simplified equations for calculating the straight development lengths in tension for threaded bars, and the upper limitations of reinforcements and concrete strengths can be adjusted to 690 MPa and 100 MPa, respectively.

中文摘要…………………………………………………………………………i 英文摘要………………………………………………………………………...ii 致謝………………………………………………………………………..........iv 目錄……………………………………………………………………………...v 表目錄.………………………………………………………………………….ix 圖目錄.…………………………………………………………………………..x 符號表.………………………………………………………………………...xix 第一章 緒論…………………………………………………………………….1 1.1 研究背景………………………………………………………………..1 1.2 動機與目的…..………………………………………………………....3 1.3 研究方法與架構..………………………………………………………4 第二章 鋼筋混凝土之握裹行為介紹………………………………………….6 2.1 鋼筋混凝土之握裹機制..………………………………………………6 2.2 影響握裹性能之因子…………………………………………………12 2.2.1 混凝土性質…………………………………………………...12 2.2.2 鋼筋性質……………………………………………………...13 2.2.3 鋼筋配置………………………………………………...........21 2.2.4 握裹試驗受力機制之類型…………………………………...24 第三章 鋼筋直線拉力伸展長度之模型介紹………………………………...26 3.1 ACI 318-63, 71, 89規範 (1963, 1971, 1989)…………………...........26 3.2 Orangun, Jirsa, and Breen模型 (1977)……………………………….27 3.3 CEB-FIP 1990規範 (1990)………………..………………………….29 3.4 Darwin等人 (1992, 1996)………………………………………….....31 3.5 ACI 318-95, 99, 02, 05規範 (1995, 1999, 2002, 2005)……………...33 3.6 Zuo and Darwin模型 (1998, 2000)…………………..………………35 3.7 ACI 408.3-01報告 (2001)……………………………………………36 3.8 ACI 408-03, ACI ITG-10報告 (2003, 2010)…………………………38 3.9 NZS 3101-06規範 (2006)………………….…………………………39 3.10 ACI 318-08, 11, 14規範 (2008, 2011, 2014)…………………….......40 3.11 AIJ-2010規範 (2010)….……………………………………..............41 3.12 鋼筋直線握裹模型之參數探討……………………………………...42 第四章 試驗計畫……………………………………………………………...52 4.1 試體設計………………………………………………………………52 4.2 試驗程序………………………………………………………………54 4.2.1 試驗系統……………………………………………...............54 4.2.2 量測系統………………………………………………...........57 4.3 量測儀器計畫…………………………………………………………60 4.3.1 應變計之黏貼作業與規畫…………………………...............60 4.3.2 位移計之量測規劃…………………………………...............61 第五章 試驗過程……………………………………………………………...63 第六章 試驗結果討論……………………………………………………….118 6.1 破壞模式…………………………………………………………......118 6.2 鋼筋應力之分析……………………………………………………..126 6.3 鋼筋直線拉力伸展長度模型之探討………………………………..129 6.4 鋼筋握裹性能之影響因子探討……………………………………..138 6.4.1 混凝土強度…..……………………………………………...138 6.4.2 鋼筋表面幾何尺寸………………………………………….139 6.4.3 混凝土保護層….……………………………………............144 6.4.4 橫向鋼筋圍束指數………………………………….............147 6.4.5 混凝土劈裂指數……………………………………….........148 6.5 鋼筋直線拉力伸展長度之建議模型………………………………..150 第七章 結論與建議………………………………………………………….156 7.1 結論…………..………………………………………………………156 7.1.1 破壞模式………………………………………….................156 7.1.2 握裹模型應用……………………………………….............157 7.1.3 鋼筋握裹性能之影響參數………………………………….157 7.1.4 本研究建議之鋼筋直線伸展長度模型………………….....158 7.2 未來展望…….………………………………………………………159 參考文獻…………………………………………………………...................160

[1] 建設省総合技術開發プロジェクト:鉄筋コンクリート造建築物之超軽量化˙超高層化技術の開發(New RC),平成四年度構造性能分科会報告書,(財)国土開發技術研究センター,1993。
[2] ASTM A615, “Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement,” ASTM International, West Conshohocken, Pa., 2015.
[3] Aoyama, H., “Design of Modern High-rise Reinforced Concrete Structures,” Imperial College Press, London, 2002.
[4] ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute (ACI), Farmington Hills, Mich., 2014.
[5] 內政部營建署,「混凝土結構設計規範」,台北市,2011。
[6] ACI Committee 408, “Bond and Development of Straight Reinforcing Bars in Tension,” American Concrete Institute (ACI), Farmington Hills, Mich., 2003.
[7] ACI Committee 318, “Building Code Requirements for Reinforced Concrete (ACI 318-71),” American Concrete Institute, Farmington Hills, Mich., 1971, 78 pp.
[8] Goto, Y., “Cracks Formed in Concrete Around Deformed Tension Bars,” ACI Journal, Proceedings V. 68, No. 4, Apr., 1971, pp. 244-251.
[9] Orangun, C. O., Jirsa, J. O., and Breen, J. E., “Reevaluation of Test Data on Development Length and Splices,” ACI Journal, Proceedings V. 74, No. 3, Mar., 1977, pp. 114-122.
[10] Darwin, D. McCabe, S. L., Idun, E. K., and Schoenekase, S. P., “Development Length Criteria: Bars Not Confined by Transverse Reinforcement,” ACI Structural Journal, V. 89, No. 6, Nov.-Dec., 1992, pp. 709-720.
[11] Zuo, J., and Darwin, D., “Bond Strength of High Relative Rib Area Reinforcing Bars,” SM Report No. 46, University of Kansas Center for Research, Lawrence, Kans., 1998, 350 pp.
[12] Zuo, J., and Darwin, D., “Splice Strength of Conventional and High Relative Rib Area Bars in Normal and High-Strength Concrete,” ACI Structural Journal, V. 97, No. 4, July-Aug., 2000, pp. 630-641.
[13] Thompson, M. A., Jirsa, J. O., Breen, J. E., and Meinheit, D. F., “The Behavior of Multiple Lap Splices in Wide Sections,” Research Report No. 154-1, Center for Highway Research, University of Texas at Austin, Tex., Feb., 1975, 75 pp.
[14] Abrams, D. A., “Tests of Bond between Concrete and Steel,” Bulletin No. 71, Engineering Experiment Station, University of Illinois, Urbana, Ill., 1913, 105 pp.
[15] Clark, A. P., “Comparative Bond Efficiency of Deformed Concrete Reinforcing Bars,” ACI Journal, Proceedings V. 43, No. 4, Dec., 1946, pp. 381-400.
[16] Clark, A. P., “Bond of Concrete Reinforcing Bars,” ACI Journal, Proceedings V. 46, No. 3, Nov., 1950, pp. 161-184.
[17] ASTM A 305T, “Tentative Specifications for Minimum Requirements for Deformations of Deformed Steel Bars for Concrete Reinforcement, A 305-47T,” ASTM International, West Conshohocken, Pa., 1947.
[18] ASTM A 305, 1949, “Specifications for Minimum Requirements for Deformations of Deformed Steel Bars for Concrete Reinforcement, A 305-49,” ASTM International, West Conshohocken, Pa., 1949.
[19] Rehm, G., “Uber die Grunlagen des Verbundes Zwischen Stahl und Beton,” Deutscher Ausschuss fur Stahlbeton, No. 1381, 1961, 59 pp.
[20] Lutz, L. A., and Gergely, P., “Mechanics of Bond and Slip of Deformed Bars in Concrete,” ACI Journal, Proceedings V. 64, No. 11, Nov., 1967, pp. 711-721.
[21] Lutz, L. A., Gergely, P., and Winter, G., “The Mechanics of Bond and Slip of Deformed Reinforcing Bars in Concrete,” Report No. 324, Department of Structural Engineering, Cornell University, Ithaca, N.Y., Nov., 1966, pp. 711-721.
[22] Skorobogatov, S. M., and Edwards, A. D., “The Influence of the Geometry of Deformed Steel Bars on Their Bond Strength in Concrete,” Proceedings, The Institution of Civil Engineers, V. 67, Part 2, June, pp. 1979, 327-339.
[23] Losberg, A., and Olsson, P.-A., “Bond Failure of Deformed Reinforcing Bars Based on the Longitudinal Splitting Effect of the Bars,” ACI Journal, Proceedings V. 76, No. 1, Jan., 1979, pp. 5-18.
[24] Soretz, S., and Holzenbein, H., “Influence of Rib Dimensions of Reinforcing Bars on Bond and Bendability,” ACI Journal, Proceedings V. 76, No. 1, Jan., 1979, pp. 111-127.
[25] Darwin, D., and Graham, E. K., “Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars,” ACI Structural Journal, V. 90, No. 6, Nov.-Dec., 1993, pp. 646-657.
[26] Darwin, D., and Graham, E. K., “Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars,” SL Report 93-1, University of Kansas Center for Research, Lawrence, Kans., Jan., 1993, 68 pp.
[27] Darwin, D., Tholen, M. L., Idun, E. K., and Zuo, J., “Splice Strength of High Relative Rib Area Reinforcing Bars,” ACI Structural Journal, V. 93, No. 1, Jan.-Feb., 1996a, pp. 95-107.
[28] Darwin, D., Zuo, J., Tholen, M. L., and Idun, E. K., “Development Length Criteria for Conventional and High Relative Rib Area Reinforcing Bars,” ACI Structural Journal, V. 93, No. 3, May-June, 1996b, pp. 347-359.
[29] ACI Committee 408, “Splice and Development Length of High Relative Rib Area Reinforcing Bars in Tension (ACI 408.3-01) and Commentary (408.3R-01),” American Concrete Institute, Farmington Hills, Mich., 2001, 6 pp.
[30] ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95),” American Concrete Institute (ACI), Farmington Hills, Mich., 1995.
[31] ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08),” American Concrete Institute (ACI), Farmington Hills, Mich., 2008.
[32] ACI Committee 318, “Building Code Requirements for Reinforced Concrete (ACI 318-63),” American Concrete Institute, Farmington Hills, Mich., 1963, 144 pp.
[33] ACI Committee 318, “Building Code Requirements for Reinforced Concrete (ACI 318-89),” American Concrete Institute, Farmington Hills, Mich., 1989, 144 pp.
[34] CEB-FIP, “Model Code for Concrete Structures,” Comité Euro-International du Béton, c/o Thomas Telford, London, 1990.
[35] Shyh-Jiann Hwang, Yih-Ren Leu, and Han-Lin Hwang, “Tension Bond Strengths of Deformed Bars of High-Strength Concrete,” ACI Structural Journal, V. 93, No. 1, Jan-Feb., 1996, pp. 11-20.
[36] ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05),” American Concrete Institute (ACI), Farmington Hills, Mich., 2005.
[37] ACI Innovation Task Group 6-10, “Design Guide for the Use of ASTM A1035/A1035M Grade 100 (690) Steel Bars for Structural Concrete (ACI ITG-6R-10),” American Concrete Institute, Farmington Hills, 2010.
[38] Standards Association of New Zealand, “NZS 3101: New Zealand Concrete Structures Standard, Part 1- the Design of Concrete Structures, Part 2- Commentary on the Design of Concrete Structures, ” New Zealand, 2006.
[39] AIJ 2010, “Standard for Structural Calculation of Reinforced Concrete Structures,” Architectural Institute of Japan, Tokyo, 2010.

QR CODE