簡易檢索 / 詳目顯示

研究生: 葉東權
Dong-Quan Yeh
論文名稱: 開發碳黑殼核TPU彈性粉末應用於半導體雷射燒熔積層製造
Development of Carbon Black Core-shell TPU Elastic Powder for Semiconductor Laser Fusion Additive Manufacturing
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 林上智
Shang-Chih Lin
許啟彬
Chi-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 103
中文關鍵詞: 積層製造選擇性雷射燒結反射率TPU碳黑
外文關鍵詞: Additive manufacturing, Selective laser sintering, Reflectance, TPU, Carbon Black
相關次數: 點閱:352下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層製造可使產品在設計上具有高度靈活性,高強度的材料已無法滿足設計者的需求,因此具有彈性的高分子材料逐漸成為市場上的新型功能材料,高分子粉末積層製造主要是以選擇性雷射燒結為主軸,在列印過程中藉由雷射之能量使粉末燒結成型,若在燒結過程中能量密度無法使粉末燒結成型,可在粉末中添加碳黑使反射率降低來增加對能量的吸收。
    在使用Sinterit公司生產的TPU粉末時,發現其粉末經震動後會發生粉碳分離之現象,利用分光光譜儀進行檢測,其反射率測試值呈現高低起伏,造成燒結過程中能量吸收不平均而影響到成品品質,因此本研究使用碳黑包覆製程製備複合粉末以改善粉碳分離之情形並提升列印性質。以波長808 nm之半導體單雷射進行列印,並在相同波長比較不同碳黑比例之複合粉末的光反射率、雷射能量密度與預熱溫度,在各不同參數下對於列印成品之影響。
    使用碳黑包覆製程製備之複合粉末不會產生粉碳分離的狀況,並且能使碳黑均勻的附著於粉末表面,可使反射率下降。針對預熱溫度、雷射能量密度、鋪粉層厚與碳黑添加量及反射率進行實驗,發現列印區預熱溫度75℃、能量密度0.028 J/mm2、層厚0.125μm與碳黑添加量0.4wt%及反射率13.81%下得到最高平均成型密度1.09 g/cm3、邵氏硬度78A、拉伸強度7.9MPa,伸長量364.9%,並與未進行碳黑包覆之複合粉末進行比較,其反射率下降1.78%,機械性質增加33.9%,且燒結成品之孔隙明顯變小。


    Additive manufacturing can make products highly flexible in design. High-strength materials can no longer meet the needs of designers. Therefore, elastic polymer materials have gradually become new functional materials in the market, the additive manufacturing of polymer powder is mainly based on selective laser sintering. During the printing process, the powder is sintered by the energy of the laser. If the energy density cannot make the powder sintered during the sintering process, can be added the carbon black to the powder to reduce reflectivity to increase energy absorption.
    When using the TPU powder produced by Sinterit, it was found that the powder and carbon would separate, and the spectrometer was used to detect it. The reflectance test value fluctuated, resulting in uneven energy absorption during the sintering process and affecting the quality of the finished product. Therefore, this study used the carbon black coating process to prepare the composite powder to improve the separation of powder and carbon and enhance the printing properties. A single semiconductor laser with a wavelength of 808 nm was used for printing, and the light reflectivity, laser energy density, and preheating temperature of the composite powder with different carbon black ratios were compared at the same wavelength and the effects on the printed product under different parameters.
    The composite powder prepared by the carbon black coating process will not cause the separation of powder and carbon, and the carbon black can be uniformly attached on the powder surface, which can reduce the reflectivity. Experiments were carried out at the preheating temperature was 75℃, laser energy density was 0.028 J/mm2, powder layer thickness was 0.125μm, carbon black addition was 0.4wt%, and reflectivity was 13.81%. The highest average density of 1.09 g/cm3, Shore hardness of 78A, the tensile strength of 7.9MPa and elongation of 364.9% were obtained. Compared with the composite powder without carbon black coating, the reflectance decreased by 1.78%. The properties increased by 33.9%, and the porosity of the sintered product became significantly smaller.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章、緒論 1 1.1前言 1 1.2研究動機 2 1.3實驗流程 3 1.4論文架構 4 第二章、文獻回顧 5 2.1積層製造技術 5 2.2高分子積層製造技術 6 2.2.1材料擠製成型技術 7 2.2.2粉床熔融成型技術 8 2.2.3選擇性雷射燒結 10 2.3 TPU應用於積層製造 13 2.4 複合粉末製作方法 15 2.5粉末燒結機制 17 2.5.1固相燒結 17 2.5.2液相燒結 18 2.5.3完全燒熔 19 第三章、實驗方法 20 3.1使用材料 20 3.1.1 TPU粉末 20 3.1.2添加劑–碳黑 21 3.2 材料基本性質測試 22 3.2.1 TPU熱性質分析-TGA 23 3.2.2 TPU熱性質分析-DSC 25 3.2.3 分光光譜儀測試–Spectrophotometer 27 3.2.4 粉末粒徑分析-PSD 29 3.3粉末製作設備及方法 31 3.3.1粉末製作設備-混煉機 31 3.3.2粉末製作設備-篩粉機 33 3.3.3複合粉末製備方法 34 3.4成型實驗設備 39 3.5測量儀器 46 3.5.1邵氏硬度計 46 3.5.2萬能試驗機 47 3.5.3熱燈絲式電子顯微鏡 48 3.5.4 場發式電子顯微鏡 49 3.5.5 CT電腦斷層掃描儀 50 第四章、實驗結果與討論 51 4.1複合粉末性質分析 51 4.1.1複合粉末分光光譜儀測試-Spectrophotometer 51 4.1.2粉末粒徑分析 54 4.1.3複合粉末熱性質分析-TGA 56 4.1.4複合粉末熱性質分析-DSC 57 4.1.5傅立葉紅外線光譜儀FT-IR 59 4.2預熱溫度對列印之影響 60 4.3混煉方式對列印之影響 62 4.3.1成型狀況先導 62 4.3.2表面均勻性之比較 67 4.4層厚參數之影響 68 4.5列印參數之影響 71 4.6碳黑比例對列印之影響 75 4.7自製粉末與商用粉末之比較 80 4.8 3D物件列印測試 81 第五章、結論與未來展望 83 5.1 結論 83 5.2 未來展望 83 參考資料 84

    [1] I.Gibson, D.Rosen, B.Stucker, andM.Khorasani, “Additive Manufacturing Technologies”.
    [2] 鄭正元, “3D列印:積層製造技術與應用(第二版),” 2021.
    [3] P.Anadão, “Polymer/ Clay Nanocomposites: Concepts, Researches, Applications and Trends for The Future,” Nanocomposites - New Trends Dev., Sep.2012, doi: 10.5772/50407.
    [4] X.Yan andP.Gu, “A review of rapid prototyping technologies and systems,” Comput. Des., vol. 28, no. 4, pp. 307–318, Apr.1996, doi: 10.1016/0010-4485(95)00035-6.
    [5] I.Gibson, D.Rosen, andB.Stucker, “Powder Bed Fusion Processes,” Addit. Manuf. Technol., pp. 107–145, 2015, doi: 10.1007/978-1-4939-2113-3_5.
    [6] A.Wiberg, Towards Design Automation for Additive Manufacturing A Multidisciplinary Optimization approach. 2019. [Online]. Available: www.liu.se
    [7] S.Haeri, Y.Wang, O.Ghita, andJ.Sun, “Discrete element simulation and experimental study of powder spreading process in additive manufacturing,” Powder Technol., vol. 306, pp. 45–54, Jan.2017, doi: 10.1016/J.POWTEC.2016.11.002.
    [8] W. Q.Yan C, Shi Y, Zhaoqing L, Wen S, “Selective Laser Sintering Additive Manufacturing Technology,” Sel. Laser Sinter. Addit. Manuf. Technol., 2020.
    [9] I.Gibson, D. W.Rosen, andB.Stucker, “Powder Bed Fusion Processes,” Addit. Manuf. Technol., pp. 120–159, 2010, doi: 10.1007/978-1-4419-1120-9_5.
    [10] R.Goodridge andS.Ziegelmeier, “Powder bed fusion of polymers,” Laser Addit. Manuf. Mater. Des. Technol. Appl., pp. 181–204, Jan.2017, doi: 10.1016/B978-0-08-100433-3.00007-5.
    [11] B.Caulfield, P. E.McHugh, andS.Lohfeld, “Dependence of mechanical properties of polyamide components on build parameters in the SLS process,” J. Mater. Process. Technol., vol. 182, no. 1–3, pp. 477–488, Feb.2007, doi: 10.1016/J.JMATPROTEC.2006.09.007.
    [12] A. E.Tontowi andT. H. C.Childs, “Density prediction of crystalline polymer sintered parts at various powder bed temperatures,” Rapid Prototyp. J., vol. 7, no. 3, pp. 180–184, 2001, doi: 10.1108/13552540110395637/FULL/PDF.
    [13] G.Lumay et al., “Measuring the flowing properties of powders and grains,” Powder Technol., vol. 224, pp. 19–27, Jul.2012, doi: 10.1016/J.POWTEC.2012.02.015.
    [14] S. R.Athreya, K.Kalaitzidou, andS.Das, “Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering,” Mater. Sci. Eng. A, vol. 527, no. 10–11, pp. 2637–2642, Apr.2010, doi: 10.1016/J.MSEA.2009.12.028.
    [15] E. P.Hopkinson N, “High Speed Sintering – Early Research into a New Rapid Manufacturing Process”.
    [16] L.Verbelen et al., “Analysis of the material properties involved in laser sintering of thermoplastic polyurethane,” Addit. Manuf., vol. 15, pp. 12–19, May2017, doi: 10.1016/J.ADDMA.2017.03.001.
    [17] J.Xu et al., “Highly exfoliated montmorillonite clay reinforced thermoplastic polyurethane elastomer: in situ preparation and efficient strengthening,” RSC Adv., vol. 9, no. 15, pp. 8184–8196, Mar.2019, doi: 10.1039/C8RA10121C.
    [18] Y.Jia, H.He, Y.Geng, B.Huang, andX.Peng, “High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing,” Compos. Sci. Technol., vol. 145, pp. 55–61, Jun.2017, doi: 10.1016/J.COMPSCITECH.2017.03.035.
    [19] R.Singh andS.Singh, “Development of Nylon Based FDM Filament for Rapid Tooling Application,” J. Inst. Eng. Ser. C 2014 952, vol. 95, no. 2, pp. 103–108, May2014, doi: 10.1007/S40032-014-0108-2.
    [20] M.Zhou, W.Zhu, S.Yu, Y.Tian, andK.Zhou, “Selective laser sintering of carbon nanotube–coated thermoplastic polyurethane: Mechanical, electrical, and piezoresistive properties,” Compos. Part C Open Access, vol. 7, p. 100212, Mar.2022, doi: 10.1016/J.JCOMC.2021.100212.
    [21] X.Wang, X.Liu, andD. W.Schubert, “Highly Sensitive Ultrathin Flexible Thermoplastic Polyurethane/Carbon Black Fibrous Film Strain Sensor with Adjustable Scaffold Networks,” Nano-Micro Lett., vol. 13, no. 1, pp. 1–19, Jan.2021, doi: 10.1007/S40820-021-00592-9/FIGURES/9.
    [22] S. R.Athreya, K.Kalaitzidou, andS.Das, “Mechanical and microstructural properties of Nylon-12/carbon black composites: Selective laser sintering versus melt compounding and injection molding,” Compos. Sci. Technol., vol. 71, no. 4, pp. 506–510, Feb.2011, doi: 10.1016/J.COMPSCITECH.2010.12.028.
    [23] A. H.Espera Jr et al., “3D Printing of a Robust Polyamide-12-Carbon Black Composite via Selective Laser Sintering: Thermal and Electrical Conductivity,” Macromol. Mater. Eng., vol. 304, no. 4, p. 1800718, Apr.2019, doi: 10.1002/MAME.201800718.
    [24] R. D.Goodridge, C. J.Tuck, andR. J. M.Hague, “Laser sintering of polyamides and other polymers,” Prog. Mater. Sci., vol. 57, no. 2, pp. 229–267, Feb.2012, doi: 10.1016/J.PMATSCI.2011.04.001.
    [25] S.Berretta, O.Ghita, andK. E.Evans, “Morphology of polymeric powders in Laser Sintering (LS): From Polyamide to new PEEK powders,” Eur. Polym. J., vol. 59, pp. 218–229, Oct.2014, doi: 10.1016/J.EURPOLYMJ.2014.08.004.
    [26] D.Drummer, S.Greiner, M.Zhao, andK.Wudy, “A novel approach for understanding laser sintering of polymers,” Addit. Manuf., vol. 27, pp. 379–388, May2019, doi: 10.1016/J.ADDMA.2019.03.012.
    [27] G. M.Vasquez, C. E.Majewski, B.Haworth, andN.Hopkinson, “A targeted material selection process for polymers in laser sintering,” Addit. Manuf., vol. 1–4, pp. 127–138, Oct.2014, doi: 10.1016/J.ADDMA.2014.09.003.

    無法下載圖示 全文公開日期 2027/07/22 (校內網路)
    全文公開日期 2027/07/22 (校外網路)
    全文公開日期 2027/07/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE