簡易檢索 / 詳目顯示

研究生: 張鈞堡
Chun-Pao Chang
論文名稱: 工程初設階段自調適工期預測模式之研究
Self-Tuned Project Duration Prediction Model in Preliminary Design Phase
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 姚乃嘉
Nie-Jia Yau
黃榮堯
Rong-Yau Huang
廖國偉
Kuo-Wei Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 98
中文關鍵詞: SOS-LSSVM工期預測模糊偏好關係(FPR)
外文關鍵詞: project duration prediction
相關次數: 點閱:248下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 營建業在工程初步設計階段,因為擁有資訊較少,對於工期多由過去相似工程之經驗做為依據來預測,雖能快速預測,其精準度卻很差。本研究蒐集國內外工期相關文獻,彙整出工程初設階段的影響因素,並且利用專家問卷、統計分析工具(SPSS)篩選出在工程初設階段顯著影響工程工期的因子,接著應用生物共生演算法最小平方差支持向量機(Symbiotic Organisms Search-Least Squares Support Vector Machines, SOS-LSSVM)建立工程初設階段自調適工期預測模式,藉由模式訓練與測試,找出輸入(影響因子)與輸出(工期)的映射關係,做出合理的工期預測。本研究透過文獻彙整、專家問卷調查與統計分析工具篩選出6個影響因子,接著根據此6個因子蒐集40筆實際工程案例並建立案例庫。將案例資料隨機分成5組,利用交叉驗證準則(Cross Validation)的概念進行訓練與測試。預測結果顯示絕對百分比誤差(Mean Absolute Percent Error, MAPE)值小於10%,屬於精準的預測,有效取代傳統主觀經驗之預測。最後將SOS-LSSVM與其他預測模式相比較,其結果亦優於迴歸分析(Regression)、倒傳類神經(BPNN)、支持向量機(SVM)、最小平方差支持向量機(LS-SVM)、演化式支持向量機推論模式(ESIM)與演化式最小平差支持向量機(ELSIM),表示本研究應用SOS-LSSVM此模式更能有效且準確地做出預測。


    Because there is less information in preliminary design phase, construction industry usually predict project duration by past experience in similar project. Although it can quickly make predictions, accuracy is poor. This research collected several related literatures of project duration, and aggregate Influential factors in preliminary design phase. Further, this research used expert-questionnaire and statistical analysis tools select six Influential factors, collecting forty actual cases based on these factors. Applying Symbiotic Organisms Search-Least Squares Support Vector Machines (SOS-LSSVM) to build Self-Tuned Project Duration Prediction Model. This research assessed model performance by using the K-fold cross validation method. The results showed that the prediction error is less than 10% in MAPE. Compared with other modules, the result is also better than the Regression, Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), Least Squares Support Vector Machines (LS-SVM), Evolutionary Support Vector Machine Inference Model (ESIM)and Evolutionary Least Squares Support Vector Machine (ELSIM). The model of this research can predict more effective and precise.

    摘要 IV Abstract V 致謝 VI 目錄 VIII 表目錄 XI 圖目錄 XII 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 研究範圍與限制 4 1.4 研究流程 5 第2章 文獻回顧 8 2.1 國內外工期預測模式相關文獻 8 2.2 初設階段影響工期之因素彙整 11 2.3 倒傳類神經網路(BPNN) 15 2.4 支持向量機(SVM) 16 2.5 最小平方差支持向量機(Least Squares SVM) 18 2.6 演化式支持向量機 (ESIM) 20 2.6.1 快速混雜基因演算法(fmGA) 20 2.6.2 演化式支持向量機 (ESIM) 21 2.7 演化式最小平差支持向量機(ELSIM) 22 2.7.1 差分進化演算法(DE) 22 2.7.2 演化式最小平方差支持向量機(ELSIM) 23 2.8 生物共生演算法最小平方差支持向量機(SOS-LSSVM) 24 2.8.1 生物共生演算法(Symbiotic Organisms Search,SOS) 24 2.8.2 生物共生演算法最小平方差支持向量機(SOS-LSSVM) 28 2.8.3 SOS-LSSVM特性 32 2.8.4 SOS-LSSVM限制 33 2.9 模糊偏好關係(FPR) 33 第3章 確立初步設計階段工期預測模式因子 37 3.1 因子篩選流程 37 3.2 第一階段因子篩選 38 3.2.1 問卷設計 38 3.2.2 問卷填寫 40 3.2.3 問卷統計量計算 40 3.2.4 因子篩選與限制 41 3.3 定性因子量化 44 3.3.1 FPR問卷調查 44 3.3.2 量化結果 49 3.4 第二階段因子篩選 50 第4章 初步設計階段工期預測模式 55 4.1 案例庫建立 55 4.1.1 正規化 56 4.2 預測模式建立 57 4.3 本研究預測模式與其他模式比較 62 4.3.1 本研究模式預測結果 62 4.3.2 不同模式比較 62 第5章 結論與建議 64 5.1 結論 64 5.2 建議 65 參考文獻 66 附錄A 70 附錄B 74 附錄C 81 附錄D 83

    1. 謝文山,「演化式建築工程成本概算模式之研究」,碩士論文,國立臺灣科技大學,2002。
    2. M.-Y. Cheng, Y.-W. Wu, ”Evolutionary support vector machine inference system for construction management” , Automation in Construction, vol. 18(5), pp. 597-604, 2009.
    3. M.-Y. Cheng, P.M. Firdausi, D. Prayogo, “High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)” , Engineering Applications of Artificial Intelligence, vol. 29, pp. 104-113, 2014.
    4. M.-Y. Cheng, M.-T. Cao, “Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams”, Engineering Applications of Artificial Intelligence, vol. 28, pp. 86-96, 2014.
    5. M.-Y. Cheng, D.K. Wibowo, D. Prayogo, A.F.V. Roy, “Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model”, Journal of Civil Engineering and Management, vol. 21, pp. 881-892, 2015.
    6. M.-Y. Cheng, N.-D. Hoang, Y.-W. Wu, “Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study”, Automation in Construction, vol. 35, pp. 306-313, 2013.
    7. M.-Y. Cheng, A.F.V. Roy, “Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines”, International Journal of Project Management, vol. 29, pp. 56-65, 2011.
    8. D. Prayogo, “A Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete”, in: Department of Construction Engineering, National Taiwan University of Science and Technology, Taiwan, 2012.

    9. M.-Y. Cheng, D. Prayogo, Y.-W. Wu, “Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete Mixture”, Journal of Computing in Civil Engineering, vol. 28(4), 06014003, 2014.
    10. 詹世杰,「學校建築成本與工期之預測-以南投縣921校園重建工程為例」,碩士論文,國立雲林科技大學,2004。
    11. 簡崑棋,「結合模糊類神經網路與快速混雜基因演算法於專案工期之預測」,碩士論文,國立成功大學,2004。
    12. Daniel W. M. Chan, Mohan M. Kumaraswamy, “A study of the factors affecting construction durations in Hong Kong”, Construction Management and Economics, vol. 13(4), pp. 319-333, 1995.
    13. Ayman A. Abu Hammad, Sourma M. Alhaj Ali, Ghaleb J. Sweis, Rateb J. Sweis, “Statistical Analysis on the Cost and Duration of Public Building Projects”, Journal of Management in Engineering, Dol: 10.1061/(ASCE)0742-597X(2010)26:2(105), 2010.
    14. E. William East, Amr Hassanein, John Melin, “Evaluating Factors That Affect Construction Project Duration”, USACERL Technical Report, FF-92/09, 1992.
    15. Chan Wai-ming, “Modelling construction duration for public housing projects in Hong Kong”, Doctoral dissertation, 1998.
    16. Huawang Shi, Wanqing Li, “The Grey Relational Analysis on Building Construction Duration Cases”, International Conference on Future BioMedical Information Engineering, pp. 358-361, 2009.
    17. Raymond N. Nkado, ”Construction time-influencing factors: the contractor’s perspective”, Construction Management and Economics, Vol. 13:1, pp. 81-89, DOI:10.1080/01446199500000009, 1995.
    18. Miguel A. Guerrero, Yolanda Villacampa, Andrés Montoyo, “Modeling construction time in Spanish building projects”, International Journal of Project Management, Vol. 32, pp. 861–873, 2014.
    19. D.E. Goldberg, K. Deb, H. Kaegupta, G. Harik, “Rapid, accurate optimization of difficult problems using fast messy genetic algorithms”, Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 56– 64, 1993.
    20. Suykens, J., et al., “Least Square Support Vector Machines”, World Scientific Publishing Co. Pte. Ltd., 2002.
    21. M.-Y. Cheng, N.-D. Hoang, ”Evolutionary Least Squares Support Vector Machine – Userguide”, Technical Report, National Taiwan Univ. of Sci. and Tech., 2012.
    22. .許淑婷,利用快速混雜基因演算法與模擬機制建立設計專案作業程序最佳化之研究,碩士論文,國立成功大學,2006
    23. Price, K.V., R.M. Storn, J.A. Lampinen, ”Differential Evolution A Practical Approach to Global Optimization”, Springer-Verlag, 2005.
    24. Storn, R, K. Price, “Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces”, J. Global Optim, vol. 11, pp. 341–359, 1997.
    25. M.-Y. Cheng, D. Prayogo, “Symbiotic Organisms Search: A new metaheuristic optimization algorithm”, Computers & Structures, vol. 139, pp. 98-112, 2014.
    26. G.G. Tejani, V.J. Savsani, V.K. Patel, “Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization”, Journal of Computational Design and Engineering, 2016.
    27. M.-Y. Cheng, D. Prayogo, D.-H. Tran, “Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search”, Journal of Computing in Civil Engineering, 2015.
    28. D.-H. Tran, M.-Y. Cheng, D. Prayogo, “A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem”, Knowledge-Based Systems, vol. 94, pp. 132-145, 2016.
    29. M.-Y. Cheng, C.-K. Chiu, Y.-F. Chiu, Y.-W. Wu, Z.-L. Syu, D. Prayogo, C.-H. Lin, “SOS optimization model for bridge life cycle risk evaluation and maintenance strategies”, Journal of the Chinese Institute of Civil and Hydraulic Engineering, vol. 26(4), pp. 293-308, 2014.
    30. S. Duman, “Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones”, Neural Computing and Applications, 2016.
    31. H. Kamankesh, V.G. Agelidis, A. Kavousi-Fard, “Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand”, Energy, vol. 100, pp. 285-297, 2016.
    32. E. Ruskartina, V.F. Yu, B. Santosa, A.A.N.P. Redi, “Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem”, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, vol. 101, pp. 857-861, 2015.
    33. A. Panda, S. Pani, “A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems”, Applied Soft Computing, vol. 46 pp. 344-360, 2016.
    34. M.-Y. Cheng, D. Prayogo, Y.-W. Wu, (in preparation), “Predicting the Pavement Rutting Behavior of Asphalt Mixtures Using Symbiotic Organisms Search - Least Squares Support Vector Machine Inference Model”, Construction and Building Materials.
    35. E. Herrera-Viedma, F. Herrera, F. Chiclana, M. Luque, ”Some issues on consistency of fuzzy preference relations”, European Journal of Operational Research, vol. 154, pp. 98-109,2004.
    36. Tien-Chin Wang, Tsung-Han Chang, “Forecasting the probability of successful knowledge management by consistent fuzzy preference relations”, Expert Systems with Applications, vol. 32, pp. 801-813, 2007.
    37. Lewis, E. B., “Control of body segment differentiation in Drosophila by the bithorax gene complex”, Embryonic Development, Part A: Genetics Aspects, Edited by Burger, M. M. and R. Weber. Alan R. Liss, New York, pp. 269-288, 1982.

    QR CODE