簡易檢索 / 詳目顯示

研究生: 丁中一
Chung-yi Ting
論文名稱: 小面積加速轉導放大器之電流模式降壓型轉換器
Current-Mode DC-DC Buck Converter with an Area-Efficient High-Speed OTA
指導教授: 李志堅
Chih-chien Lee
羅有綱
Yu-kang Lo
邱煌仁
Huang-jen Chiu
劉邦榮
Pang-jung Liu
口試委員: 歐勝源
Sheng-yuan Ou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 123
中文關鍵詞: 電流模式降壓型轉換器加速轉導放大器暫態響應
外文關鍵詞: Current-Mode, Buck Converter, High-Speed OTA, Transient Response
相關次數: 點閱:425下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出具加速機制轉導放大器,操作於電流模式的降壓型直流直流轉換器。為了改善降壓型轉換器在負載巨幅變動下,所造成輸出電壓暫態變化過大與暫態回復時間過長的問題。因此本論文提出具加速機制轉導放大器,其主要利用兩組差動放大器,以感測負載變化載時,輸出電壓下降(或上升)幅度。當輸出電壓(VOUT)變化超過參考電壓(VREF)一參考差值時,加速機制立即啟動,直到輸出電壓回穩,加速電路才會關閉。其中,參考差值可透過調整差動放大器的輸入電晶體之長寬比。根據量測結果,當負載從輕載變重載時(50-500 mA),輸出電壓變異最大幅度為25 mV,暫態回覆時間為16 μs;當負載從重載變輕載時(500-50 mA),輸出電壓變異最大幅度為40 mV,暫態回覆時間為16 μs。因此具加速機制轉導放放大器有效改善暫態響應。本晶片採用TSMC 0.35 μm 2P4M CMOS製程實現,晶片面積為1.439×1.430 mm2 (含PADs)。


    The proposed area-efficient high-speed operational transconductance amplifier (OTA) is designed for current mode buck converters to alleviate the output voltage variation and to shorten the transient recovery time for load current changes. Two differential pairs in the proposed OTA are used to detect the output voltage variation when the load current changes. If the output voltage variation is across an offset voltage, the high speed circuit will be reacted until the output voltage is back to the regulated value. The offset voltage can be adjusted by designing the size of the input transistors of the two differential pairs. According to measurement results, the maximum output voltage variation and transient recovery time are 25 mV and 16 μs, respectively, for a step-up load from 50 mA to 500 mA. Similarly, the maximum output voltage variation and transient recovery time are 40 mV and 16 μs, respectively, for a step-down load from 500 mA to 50 mA. Hence, the proposed area-efficient high-speed OTA applied in current mode buck converter can improve transient response. The chip is implemented by TSMC 0.35 μm 2P4M COMS Technology, and the size including pads is 1.439×1.430 mm2.

    摘要I ABSTRACTII 誌謝III 目錄V 圖目錄IX 表目錄XV 第一章 緒論1 1.1相關研發發展近況1 1.2研究動機與目的4 1.3各種加速機制的簡介與比較7 第二章 直流-直流轉換器操作原理11 2.1切換式降壓型轉換器操作原理12 2.1.1 連續導通模式之穩態分析 14 2.1.2 不連續導通模式之穩態分析19 2.1.3 邊界導通模式之穩態分析23 2.2直流-直流轉換器規格與定義25 2.2.1 輸出電壓漣波25 2.2.2 效率25 2.2.3 暫態響應27 2.2.4 線性調節率29 2.2.5 負載調節率29 第三章 小面積低功耗快速輸出緩衝器30 3.1前言30 3.2整體的架構介紹與設計概念31 3.3加速機制控制電路設計與分析33 3.4輕載時頻率補償電路設計與分析37 第四章 具加速機制轉導放大器之電流模式45 4.1電路架構簡介45 4.2補償設計與穩定度分析48 4.2.1前言48 4.2.2 電壓迴授補償設計與穩定度分析48 4.2.3 電流迴授補償設計與穩定度分析54 4.3子電路原理介紹與模擬結果60 4.3.1 具加速機制轉導放大器60 4.3.2 鋸齒波產生電路66 4.3.3 疊接轉導放大器68 4.3.4 遲滯比較器70 4.3.5 內建電流感測電路72 4.3.6 電壓對電流轉換器74 4.3.7 雙級串接疊接放大器77 4.3.8 具空白時間輸出緩衝器與功率電晶體79 第五章 模擬結果83 5.1快速輸出緩衝器的模擬結果83 5.1.1 各種負載下暫態特性83 5.1.2 輕載下補償機制85 5.2直流-直流轉換器規格模擬結果88 5.2.1 輸出電壓漣波結果88 5.2.2 負載變化之暫態響應速度89 5.2.3 線調節率90 5.2.4 負載調節率91 5.2.5 輸出電壓範圍92 5.2.6 效率93 第六章 晶片量測結果94 6.1小面積快速輸出緩衝器佈局與量測結果94 6.1.1 整體系統之晶片佈局圖94 6.1.2 晶片腳位配置與系統95 6.1.3 量測環境與方法97 6.1.4 量測結果98 6.1.5 文獻比較表104 6.2電流模式直流直流降壓型轉換器佈局與量測結果106 6.2.1 整體系統與晶片佈局圖106 6.2.2 晶片腳位配置與系統107 6.2.3 量測結果111 6.2.4 量測規格與文獻比較118 第七章 結論與未來展望120 7.1結論120 7.2未來望120 參考文獻122

    [1]梁適安 編著,交換式電源供應器之理論與實務設計,全華圖書股份有限公司,2001。
    [2]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Norwell, MA: Kluwer, 2001 2nd.
    [3]Abraham I. Pressman, Switching Power Supply, 2/e, McGraw-Hill, 1999.
    [4]Yu-Huei Lee, Shao-Chang Huang, Shih-Wei Wang, and Ke-Horng Chen, “Fast Transient (FT) Technique with Adaptive Phase Margin (APM) for Current Mode DC-DC Buck Converters,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Issue: 99 , 2011.
    [5]Ke-Horng Chen, Hong-Wei Huang, and Sy-Yen Kuo, “Fast Transient DC-DC Converter with On-Chip Compensated Error Amplifier,” IEEE Transactions on Circuits and Systems II, pp. 1150-1154, Dec. 2007.
    [6]Chun-Yu Hsieh and Ke-Horng Chen, “Adaptive Pole-Zero Position (APZP) Technique of Regulated Power Supply for Improving SNR,” IEEE Transaction on Power Electronics, pp. 2949-2963, Nov. 2008.
    [7] Yuan Yen Mai and Philip K. T. Mok, “A Constant Frequency Output Ripple Voltage Based Buck Converter Without Using Large ESR Capacitor,” IEEE Transactions on Circuits and Systems II, vol. 55, no. 8, Aug. 2008.
    [8]EPARC 編著,電力電子綜論,全華圖書股份有限公司,2007。
    [9]Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill,2001.
    [10]Gabriel Alfonso Rincon Mora, Analog IC Design with Low-Dropout Regulators, McGraw-Hill, 2009.
    [11]林恩,具暫態響應改善之CMOS直流直流轉換器,國立臺灣科技大學,電子工程研究所,碩士論文,台北,2011。
    [12]Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, Oxford University Press, 2002.
    [13]Jyun-Ping Jiang, A High Slew-Rate AMLCD Source Driver Buffer Applicable for Wide Load Range, National Taiwan University, Graduate Institute of Electronics Engineering, 2008.
    [14]Chen-Yu Wang, A Current Mode Buck Regulator with an Adjusted-Slope Compensation Ramp, National Cheng Kung University, Electrical Engineering, 2005.
    [15]Cheung Fai Lee and Philip K. T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current-Sensing Technique, ” IEEE JSSC, vol. 39, no.1, January 2004.
    [16]P.C. Yu, and J.C. Wu, “A Class-B Output Buffer for Flat-Panel-Display Column Driver, ” IEEE JSSC, vol. 34, no.1 pp. 116-119, January 1999.
    [17]C. W. Lu, “High-Speed Driving Scheme and Compact High-Speed Low-Power Rail-to-Rail Class-B Buffer Amplifier for LCD Applications,” IEEE JSSC, vol. 39, pp. 1938-1947, November 2004.
    [18]I. Fujimori-Chen, R. Muller, W. Fazio, A. Farrell, and D. Whitney, “A 10b 75ns CMOS Scanning-Display-Driver System for QVGA LCDs” IEEE ISSCC Tech. Gig., pp. 172-604, Feb. 2008.
    [19]Tetsuro Itakura, Hironori Minamizaki, Tetsuya Saito, and Tadashi Kuroda, “A 402-Output TFT-LCD Driver IC With Power Control Based on the Number of the Colors Selected,” IEEE JSSC, vol. 38, pp. 503-510, March 2003.
    [20]Yu-Huei Lee, Shih-Jung Wang, and Ke-Horng Chen, “Quadratic Differential and Integration Technique in V2 Control Buck Converter With Small ESR Capacitor,” IEEE Transactions on Power Electronics, vol. 25, no.4, April 2010.

    無法下載圖示 全文公開日期 2017/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE