簡易檢索 / 詳目顯示

研究生: Nguyen Hoang Chinh
Nguyen Hoang Chinh
論文名稱: Biodiesel production from insect
Biodiesel production from insect
指導教授: 王復民
Fu-Ming Wang
口試委員: 王復民
Fu-Ming Wang
蘇家弘
Chia-Hung Su
蘇清源
Ching-Yuan Su
傅俊中
Chun-Chong Fu
謝建國
Chien-Kuo Hsieh
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 98
中文關鍵詞: 黑水虻幼蟲生質柴油昆蟲回應曲面法轉酯化反應
外文關鍵詞: Black soldier fly larvae, Biodiesel, Insect, Response surface methodology, Transesterification
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Abstract iii Acknowledgement v Abbreviations ix List of Tables x List of Figures xi Chapter 1. Introduction 1 1.1. Black soldier fly 1 1.2. Fat potential of BSFL for biodiesel synthesis 1 1.3. Processes for biodiesel production from insects 3 1.4. Research innovation 5 Chapter 2. Literature Review 6 2.1. Biodiesel production 6 2.2. Feedstocks for biodiesel production 6 2.2.1. Edible oils 7 2.2.2. Non-edible oils 9 2.2.2.1. Non-edible vegetable oils 9 2.2.2.2. Animal fat 9 2.2.2.3. Waste cooking oil 10 2.2.2.4. Microbial oils 11 2.2.2.4.1. Fungal lipid 11 2.2.2.4.2. Yeast lipid 11 2.2.2.4.3. Bacterial lipid 12 2.2.2.4.4. Microalgae oil 12 2.2.2.5. Insect fat 13 2.3. Technology for biodiesel production 14 2.3.1. Pyrolysis 14 2.3.2. Micro-emulsification 15 2.3.3. Dilution/blending 15 2.3.4. Transesterification/esterification 15 2.3.4.1. Non-catalytic transesterification 18 2.3.4.1.1. Supercritical transesterification 18 2.3.4.1.2. Biox co-solvent transesterification 18 2.3.4.2. Catalytic transesterification 19 2.3.4.2.1. Homogeneous alkali-catalyzed transesterification 19 2.3.4.2.2. Homogeneous acid-catalyzed transesterification 20 2.3.4.2.3. Heterogeneous alkali-catalyzed transesterification 20 2.3.4.2.4. Heterogeneous acid-catalyzed transesterification 22 2.3.4.2.5. Enzyme-catalyzed transesterification 23 2.3.4.2.6. Microwave-assisted transesterification 24 2.3.4.2.7. Ultrasound-assisted transesterification 24 2.4. Benefits and limitations of biodiesel 26 Chapter 3. Materials and Methods 28 3.1. Materials 28 3.2. Insect species and cultivation conditions 28 3.3. Experimental procedure for lipase-catalyzed transesterification of BSFL fat with methanol for biodiesel synthesis 28 3.3.1. Fat extraction 28 3.3.2. Optimization of transesterification using RSM 28 3.4. Experimental procedure for lipase-catalyzed interesterification of BSFL fat with methyl acetate for biodiesel synthesis 29 3.4.1. Effect of different acyl acceptors on biodiesel production 29 3.4.2. Optimization of interesterification using RSM 29 3.5. Experimental procedure for direct transesterification of BSFL biomass for biodiesel synthesis using acetone as a cosolvent 30 3.5.1. Effect of co-solvent on direct transesterification 30 3.5.2. Effect of reaction factors on direct transesterification 30 3.6. Experimental procedure for direct transesterification of BSFL biomass for biodiesel synthesis using DBU as a solvent and catalyst 30 3.6.1. Direct transesterification 30 3.6.2. Reusability of DBU 31 3.7. Analysis 31 Chapter 4. Results and Discussion 33 4.1. Lipase-catalyzed transesterification of black soldier fly larvae fat with methanol for biodiesel synthesis 33 4.1.1. Characteristics of BSFL fat 33 4.1.2. RSM model development 33 4.1.3. Combined effect of reaction factors on reaction 36 4.1.4. Obtaining optimal reaction conditions 38 4.1.5. Conclusions 38 4.2. Lipase-catalyzed interesterification of black soldier fly larvae fat with methyl acetate for biodiesel synthesis 39 4.2.1. Influence of different acyl acceptors on biodiesel synthesis 39 4.2.2. RSM model development 40 4.2.3. Mutual effect of reaction factors on biodiesel yield 42 4.2.4. Determination of optimal reaction conditions 45 4.2.5. The economic feasibility of BSFL biodiesel 45 4.2.6. Conclusions 46 4.3. Direct transesterification of black soldier fly larvae biomass for biodiesel production using acetone as a cosolvent 47 4.3.1. Effect of cosolvent on direct transesterification 47 4.3.2. Influences of reaction factors on biodiesel yield 48 4.3.3. Comparison with conventional production method 52 4.3.4. Conclusions 53 4.4. Direct transesterification of black soldier fly larvae biomass for biodiesel production using DBU as a solvent and catalyst 53 4.4.1. Effect of DBU amount 53 4.4.2. Effect of methanol amount 54 4.4.3. Effect of temperature 55 4.4.4. Effect of reaction time 56 4.4.5. Reusability of DBU 56 4.4.6. Comparison with other studies 57 4.4.7. Conclusions 58 4.5. Fatty acid profiles of BSFL biodiesel 58 4.6. Properties of BSFL biodiesel 60 Chapter 5. Summary 62 References 63

[1] Wang YS, Shelomi M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017;6:91.
[2] Li Q, Zheng L, Qiu N, Cai H, Tomberlin JK, Yu Z. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Management 2011;31:1316-20.
[3] Tomberlin JK, Sheppard DC. Factors influencing mating and oviposition of black soldier flies (Diptera: Stratiomyidae) in a colony. Journal of Entomological Science 2002;37:345-52.
[4] Tomberlin JK, Sheppard DC, Joyce JA. Selected life-history traits of black soldier flies (Diptera: Stratiomyidae) reared on three artificial diets. Annals of the Entomological Society of America 2002;95:379-86.
[5] Surendra K, Olivier R, Tomberlin JK, Jha R, Khanal SK. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renewable Energy 2016;98:197-202.
[6] Makkar HP, Tran G, Heuzé V, Ankers P. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology 2014;197:1-33.
[7] Li W, Li Q, Zheng L, Wang Y, Zhang J, Yu Z, Zhang Y. Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresource Technology 2015;194:276-82.
[8] Manzano-Agugliaro F, Sanchez-Muros M, Barroso F, Martínez-Sánchez A, Rojo S, Pérez-Bañón C. Insects for biodiesel production. Renewable and Sustainable Energy Reviews 2012;16:3744-53.
[9] Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S. From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel 2011;90:1545-8.
[10] Zheng L, Hou Y, Li W, Yang S, Li Q, Yu Z. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy 2012;47:225-9.
[11] Zheng L, Li Q, Zhang J, Yu Z. Double the biodiesel yield: rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renewable Energy 2012;41:75-9.
[12] Yang S, Li Q, Gao Y, Zheng L, Liu Z. Biodiesel production from swine manure via housefly larvae (Musca domestica L.). Renewable Energy 2014;66:222-7.
[13] Yang S, Li Q, Zeng Q, Zhang J, Yu Z, Liu Z. Conversion of solid organic wastes into oil via Boettcherisca peregrine (Diptera: Sarcophagidae) larvae and optimization of parameters for biodiesel production. PLoS ONE 2012;7:e45940.
[14] Bowling JJ, Anderson JB, Armbrust KL, Hamann MT. Evaluation of potential biodiesel feedstock production from oleaginous insect Solenopsis sp. Fuel 2014;117:5-7.
[15] Li Z, Yang D, Huang M, Hu X, Shen J, Zhao Z, Chen J. Chrysomya megacephala (Fabricius) larvae: a new biodiesel resource. Applied Energy 2012;94:349-54.
[16] Leung D, Yang D, Li Z, Zhao Z, Chen J, Zhu L. Biodiesel from Zophobas morio larva oil: process optimization and FAME characterization. Industrial & Engineering Chemistry Research 2012;51:1036-40.
[17] Leong SY, Kutty SRM, Malakahmad A, Tan CK. Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste. Waste Management 2016;47:84-90.
[18] ur Rehman K, Cai M, Xiao X, Zheng L, Wang H, Soomro AA, Zhou Y, Li W, Yu Z, Zhang J. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.). Journal of Environmental Management 2017;196:458-65.
[19] Meneguz M, Schiavone A, Gai F, Dama A, Lussiana C, Renna M, Gasco L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. Journal of the Science of Food and Agriculture 2018;98:5776-84.
[20] Salomone R, Saija G, Mondello G, Giannetto A, Fasulo S, Savastano D. Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process using Hermetia illucens. Journal of Cleaner Production 2017;140:890-905.
[21] Mohd-Noor SN, Wong CY, Lim JW, Uemura Y, Lam MK, Ramli A, Bashir MJ, Tham L. Optimization of self-fermented period of waste coconut endosperm destined to feed black soldier fly larvae in enhancing the lipid and protein yields. Renewable Energy 2017;111:646-54.
[22] ur Rehman K, Rehman A, Cai M, Zheng L, Xiao X, Somroo AA, Wang H, Li W, Yu Z, Zhang J. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). Journal of Cleaner Production 2017;154:366-73.
[23] Zi-zhe C, De-po Y, Sheng-qing W, Yong W, Reaney MJ, Zhi-min Z, Long-ping Z, Guo S, Yi N, Dong Z, Hui-ran N. Conversion of poultry manure to biodiesel, a practical method of producing fatty acid methyl esters via housefly (Musca domestica L.) larval lipid. Fuel 2017;210:463-71.
[24] Zheng L, Hou Y, Li W, Yang S, Li Q, Yu Z. Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock. Applied Energy 2013;101:618-21.
[25] Wang H, ur Rehman K, Liu X, Yang Q, Zheng L, Li W, Cai M, Li Q, Zhang J, Yu Z. Insect biorefinery: a green approach for conversion of crop residues into biodiesel and protein. Biotechnology for Biofuels 2017;10:304.
[26] Sadorsky P. Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. Energy Economics 2009;31:456-62.
[27] Niju S, Balajii M, Anushya C. A comprehensive review on biodiesel production using Moringa oleifera oil. International Journal of Green Energy 2019;16:702-15.
[28] Elkelawy M, Bastawissi HAE, Esmaeil KK, Radwan AM, Panchal H, Sadasivuni KK, Ponnamma D, Walvekar R. Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with diesel/biodiesel blends. Fuel 2019;255:115791.
[29] Naylor RL, Higgins MM. The rise in global biodiesel production: implications for food security. Global Food Security 2018;16:75-84.
[30] Canakci M, Sanli H. Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology & Biotechnology 2008;35:431-41.
[31] Ambat I, Srivastava V, Sillanpää M. Recent advancement in biodiesel production methodologies using various feedstock: a review. Renewable and Sustainable Energy Reviews 2018;90:356-69.
[32] Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology 2010;101:7201-10.
[33] Essamlali Y, Amadine O, Fihri A, Zahouily M. Sodium modified fluorapatite as a sustainable solid bi-functional catalyst for biodiesel production from rapeseed oil. Renewable Energy 2019;133:1295-307.
[34] Hosseini S, Moradi G, Bahrami K. Synthesis of a novel stabilized basic ionic liquid through immobilization on boehmite nanoparticles: a robust nanocatalyst for biodiesel production from soybean oil. Renewable Energy 2019;138:70-8.
[35] Vardast N, Haghighi M, Dehghani S. Sono-dispersion of calcium over Al-MCM-41used as a nanocatalyst for biodiesel production from sunflower oil: influence of ultrasound irradiation and calcium content on catalytic properties and performance. Renewable Energy 2019;132:979-88.
[36] Sanchez F, Vasudevan PT. Enzyme catalyzed production of biodiesel from olive oil. Applied Biochemistry and Biotechnology 2006;135:1-14.
[37] Dorado MP, Ballesteros E, Mittelbach M, López FJ. Kinetic parameters affecting the alkali-catalyzed transesterification process of used olive oil. Energy & Fuels 2004;18:1457-62.
[38] Madhuvilakku R, Piraman S. Biodiesel synthesis by TiO2–ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresource Technology 2013;150:55-9.
[39] Shahedi M, Yousefi M, Habibi Z, Mohammadi M, As' habi MA. Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology. Renewable Energy 2019;141:847-57.
[40] Jazie AA, Pramanik H, Sinha A. Transesterification of peanut and rapeseed oils using waste of animal bone as cost effective catalyst. Materials for Renewable and Sustainable Energy 2013;2:11.
[41] Cao P, Tremblay AY, Dubé MA. Kinetics of canola oil transesterification in a membrane reactor. Industrial & Engineering Chemistry Research 2009;48:2533-41.
[42] Aslan S, Aka N, Karaoglu MH. NaOH impregnated sepiolite based heterogeneous catalyst and its utilization for the production of biodiesel from canola oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2019;41:290-7.
[43] Nakpong P, Wootthikanokkhan S. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renewable Energy 2010;35:1682-7.
[44] Kumar D, Kumar G, Singh C. Fast, easy ethanolysis of coconut oil for biodiesel production assisted by ultrasonication. Ultrasonics Sonochemistry 2010;17:555-9.
[45] Dixit S, Rehman A. Linseed oil as a potential resource for bio-diesel: a review. Renewable and Sustainable Energy Reviews 2012;16:4415-21.
[46] Gargari MH, Sadrameli S. Investigating continuous biodiesel production from linseed oil in the presence of a co-solvent and a heterogeneous based catalyst in a packed bed reactor. Energy 2018;148:888-95.
[47] Mardhiah HH, Ong HC, Masjuki H, Lim S, Lee H. A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and Sustainable Energy Reviews 2017;67:1225-36.
[48] Martindale W, Trewavas A. Fuelling the 9 billion. Nature Biotechnology 2008;26:1068.
[49] Gurunathan B, Ravi A. Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresource Technology 2015;190:424-8.
[50] ANR R, Saleh AA, Islam MS, Hamdan S, Maleque MA. Biodiesel production from crude Jatropha oil using a highly active heterogeneous nanocatalyst by optimizing transesterification reaction parameters. Energy & Fuels 2015;30:334-43.
[51] Wen L, Wang Y, Lu D, Hu S, Han H. Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 2010;89:2267-71.
[52] Dhar A, Kevin R, Agarwal AK. Production of biodiesel from high-FFA neem oil and its performance, emission and combustion characterization in a single cylinder DICI engine. Fuel Processing Technology 2012;97:118-29.
[53] Mehmood T, Naseem A, Anwar F, Iqbal M, Shaheen MA. Jatropha curcas L.: a non-food oil source for optimized biodiesel production. Journal of the Chemical Society of Pakistan 2019;41:458.
[54] Morshed M, Ferdous K, Khan MR, Mazumder M, Islam M, Uddin MT. Rubber seed oil as a potential source for biodiesel production in Bangladesh. Fuel 2011;90:2981-6.
[55] Winoto V, Yoswathana N. Optimization of biodiesel production using nanomagnetic CaO-based catalysts with subcritical methanol transesterification of rubber seed oil. Energies 2019;12:230.
[56] Živković SB, Veljković MV, Banković-Ilić IB, Krstić IM, Konstantinović SS, Ilić SB, Avramović JM, Stamenković OS, Veljković VB. Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renewable and Sustainable Energy Reviews 2017;79:222-47.
[57] Kaur N, Ali A. Lithium ions-supported magnesium oxide as nano-sized solid catalyst for biodiesel preparation from mutton fat. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2013;35:184-92.
[58] Antonio DC, Amancio LP, Rosset IG. Biocatalytic ethanolysis of waste chicken fat for biodiesel production. Catalysis Letters 2018;148:3214-22.
[59] Kirubakaran M, Selvan VAM. A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews 2018;82:390-401.
[60] Suwannapa P, Tippayawong N. Optimization of two-step biodiesel production from beef tallow with microwave heating. Chemical Engineering Communications 2017;204:618-24.
[61] Nelson RG, Schrock MD. Energetic and economic feasibility associated with the production, processing, and conversion of beef tallow to a substitute diesel fuel. Biomass and Bioenergy 2006;30:584-91.
[62] da Cunha ME, Krause LC, Moraes MSA, Faccini CS, Jacques RA, Almeida SR, Rodrigues MRA, Caramão EB. Beef tallow biodiesel produced in a pilot scale. Fuel Processing Technology 2009;90:570-5.
[63] Mata TM, Cardoso N, Ornelas M, Neves S, Caetano NS. Evaluation of two purification methods of biodiesel from beef tallow, pork lard, and chicken fat. Energy & Fuels 2011;25:4756-62.
[64] Marín-Suárez M, Méndez-Mateos D, Guadix A, Guadix EM. Reuse of immobilized lipases in the transesterification of waste fish oil for the production of biodiesel. Renewable Energy 2019;140:1-8.
[65] Fadhil AB, Ali LH. Alkaline-catalyzed transesterification of Silurus triostegus Heckel fish oil: optimization of transesterification parameters. Renewable Energy 2013;60:481-8.
[66] Kwon EE, Jeon EC, Yi H, Kim S. Transforming duck tallow into biodiesel via noncatalytic transesterification. Applied Energy 2014;116:20-5.
[67] Mofijur M, Atabani A, Masjuki Ha, Kalam M, Masum B. A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: a comparative evaluation. Renewable and Sustainable Energy Reviews 2013;23:391-404.
[68] Aboelazayem O, Gadalla M, Saha B. Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil. Renewable Energy 2019;143:77-90.
[69] Aghel B, Mohadesi M, Ansari A, Maleki M. Pilot-scale production of biodiesel from waste cooking oil using kettle limescale as a heterogeneous catalyst. Renewable Energy 2019;142:207-14.
[70] Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. Biodiesel production from oleaginous microorganisms. Renewable Energy 2009;34:1-5.
[71] Pinzi S, Leiva D, López‐García I, Redel‐Macías MD, Dorado MP. Latest trends in feedstocks for biodiesel production. Biofuels, Bioproducts and Biorefining 2014;8:126-43.
[72] Economou CN, Makri A, Aggelis G, Pavlou S, Vayenas D. Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresource Technology 2010;101:1385-8.
[73] Hui L, Wan C, Hai-Tao D, Xue-Jiao C, Qi-Fa Z, Yu-Hua Z. Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresource Technology 2010;101:7556-62.
[74] Johnravindar D, Karthikeyan OP, Selvam A, Murugesan K, Wong JW. Lipid accumulation potential of oleaginous yeasts: a comparative evaluation using food waste leachate as a substrate. Bioresource Technology 2018;248:221-8.
[75] Yen HW, Yang YC, Yu YH. Using crude glycerol and thin stillage for the production of microbial lipids through the cultivation of Rhodotorula glutinis. Journal of Bioscience and Bioengineering 2012;114:453-6.
[76] Cho HU, Kim HG, Kim YM, Park JM. Volatile fatty acid recovery by anaerobic fermentation from blue-green algae: effect of pretreatment. Bioresource Technology 2017;244:1433-8.
[77] Tsakona S, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Kookos IK, Koutinas AA. Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. Journal of Biotechnology 2014;189:36-45.
[78] Probst KV, Vadlani PV. Production of single cell oil from Lipomyces starkeyi ATCC 56304 using biorefinery by-products. Bioresource Technology 2015;198:268-75.
[79] Patel A, Sindhu DK, Arora N, Singh RP, Pruthi V, Pruthi PA. Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresource Technology 2015;197:91-8.
[80] Zhang Q, Li Y, Xia L. An oleaginous endophyte Bacillus subtilis HB1310 isolated from thin-shelled walnut and its utilization of cotton stalk hydrolysate for lipid production. Biotechnology for Biofuels 2014;7:152.
[81] Gouda MK, Omar SH, Aouad LM. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World Journal of Microbiology and Biotechnology 2008;24:1703.
[82] Wei Z, Zeng G, Huang F, Kosa M, Huang D, Ragauskas AJ. Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chemistry 2015;17:2784-9.
[83] Alvarez H, Steinbüchel A. Triacylglycerols in prokaryotic microorganisms. Applied Microbiology and Biotechnology 2002;60:367-76.
[84] Shi S, Valle‐Rodríguez JO, Siewers V, Nielsen J. Prospects for microbial biodiesel production. Biotechnology Journal 2011;6:277-85.
[85] Deshmukh S, Kumar R, Bala K. Microalgae biodiesel: a review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Processing Technology 2019;191:232-47.
[86] Goh BHH, Ong HC, Cheah MY, Chen W-H, Yu KL, Mahlia TMI. Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renewable and Sustainable Energy Reviews 2019;107:59-74.
[87] Bharathiraja B, Chakravarthy M, Kumar RR, Yuvaraj D, Jayamuthunagai J, Kumar RP, Palani S. Biodiesel production using chemical and biological methods–A review of process, catalyst, acyl acceptor, source and process variables. Renewable and Sustainable Energy Reviews 2014;38:368-82.
[88] Tasić MB, Pinto LFR, Klein BC, Veljković VB, Maciel Filho R. Botryococcus braunii for biodiesel production. Renewable and Sustainable Energy Reviews 2016;64:260-70.
[89] Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N. Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production. Biomass and Bioenergy 2012;37:60-6.
[90] Palabhanvi B, Muthuraj M, Kumar V, Mukherjee M, Ahlawat S, Das D. Continuous cultivation of lipid rich microalga Chlorella sp. FC2 IITG for improved biodiesel productivity via control variable optimization and substrate driven pH control. Bioresource Technology 2017;224:481-9.
[91] Couto RM, Simoes PC, Reis A, Da Silva TL, Martins VH, Sánchez‐Vicente Y. Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Engineering in Life Sciences 2010;10:158-64.
[92] Chisti Y. Biodiesel from microalgae. Biotechnology Advances 2007;25:294-306.
[93] Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metabolic Engineering 2015;27:1-9.
[94] Chang KJL, Nichols CM, Blackburn SI, Dunstan GA, Koutoulis A, Nichols PD. Comparison of thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for production of biodiesel, long-chain omega-3 oils, and exopolysaccharide. Marine Biotechnology 2014;16:396-411.
[95] Kuan D, Dai L, Liu D, Liu H, Du W. Efficient biodiesel conversion from microalgae oil of Schizochytrium sp. Catalysts 2019;9:341.
[96] Gebremariam SN, Marchetti JM. Biodiesel production technologies. AIMS Energy 2017;5:425-57.
[97] Mohan D, Pittman Jr CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels 2006;20:848-89.
[98] Schwab A, Dykstra G, Selke E, Sorenson S, Pryde E. Diesel fuel from thermal decomposition of soybean oil. Journal of the American Oil Chemists' Society 1988;65:1781-6.
[99] Lima DG, Soares VC, Ribeiro EB, Carvalho DA, Cardoso ÉC, Rassi FC, Mundim KC, Rubim JC, Suarez PA. Diesel-like fuel obtained by pyrolysis of vegetable oils. Journal of Analytical and Applied Pyrolysis 2004;71:987-96.
[100] Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G. Current biodiesel production technologies: a comparative review. Energy Conversion and Management 2012;63:138-48.
[101] Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater AV, Grimm HP, Soldaini I, Webster A, Baglioni P. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 1: emulsion production. Biomass and Bioenergy 2003;25:85-99.
[102] Mahanta P, Shrivastave A. Technology development of bio-diesel as an energy alternative. Department of Mechanical Engineering, Indian Institute of Technology 2004.
[103] Schwab A, Bagby M, Freedman B. Preparation and properties of diesel fuels from vegetable oils. Fuel 1987;66:1372-8.
[104] Ma F, Hanna MA. Biodiesel production: a review. Bioresource Technology 1999;70:1-15.
[105] Bilgin A, Durgun O, Sahin Z. The effects of diesel-ethanol blends on diesel engine performance. Energy Sources 2002;24:431-40.
[106] Almeida EL, Andrade CMG, dos Santos OA. Production of biodiesel via catalytic processes: a brief review. International Journal of Chemical Reactor Engineering 2018;16:20170130.
[107] Aransiola E, Ojumu T, Oyekola O, Madzimbamuto T, Ikhu-Omoregbe D. A review of current technology for biodiesel production: state of the art. Biomass and Bioenergy 2014;61:276-97.
[108] Rathnam VM, Madras G. Conversion of Shizochitrium limacinum microalgae to biodiesel by non-catalytic transesterification using various supercritical fluids. Bioresource Technology 2019;288:121538.
[109] Ilham Z, Saka S. Two-step supercritical dimethyl carbonate method for biodiesel production from Jatropha curcas oil. Bioresource Technology 2010;101:2735-40.
[110] Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 2001;80:225-31.
[111] Demirbas A. Current technologies in biodiesel production. In Biodiesel: a realistic fuel alternative for diesel engines. Springer-Verlag London Limited, 2008,161-73.
[112] Boocock DG, Konar SK, Mao V, Sidi H. Fast one-phase oil-rich processes for the preparation of vegetable oil methyl esters. Biomass and Bioenergy 1996;11:43-50.
[113] Borugadda VB, Goud VV. Biodiesel production from renewable feedstocks: status and opportunities. Renewable and Sustainable Energy Reviews 2012;16:4763-84.
[114] Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG. Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research 2005;44:5353-63.
[115] Wang Y, Ou S, Liu P, Xue F, Tang S. Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical 2006;252:107-12.
[116] Avhad M, Marchetti J. A review on recent advancement in catalytic materials for biodiesel production. Renewable and Sustainable Energy Reviews 2015;50:696-718.
[117] Keera S, El Sabagh S, Taman A. Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst. Fuel 2011;90:42-7.
[118] Uzun BB, Kılıç M, Özbay N, Pütün AE, Pütün E. Biodiesel production from waste frying oils: optimization of reaction parameters and determination of fuel properties. Energy 2012;44:347-51.
[119] Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology 2008;99:1716-21.
[120] Karmakar A, Karmakar S, Mukherjee S. Biodiesel production from neem towards feedstock diversification: Indian perspective. Renewable and Sustainable Energy Reviews 2012;16:1050-60.
[121] Chung KH, Kim J, Lee KY. Biodiesel production by transesterification of duck tallow with methanol on alkali catalysts. Biomass and Bioenergy 2009;33:155-8.
[122] Dias JM, Alvim-Ferraz MC, Almeida MF. Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel 2008;87:3572-8.
[123] Li Y, Qiu F, Yang D, Sun P, Li X. Transesterification of soybean oil and analysis of bioproduct. Food and Bioproducts Processing 2012;90:135-40.
[124] Chen KS, Lin YC, Hsu KH, Wang HK. Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy 2012;38:151-6.
[125] Karavalakis G, Anastopoulos G, Karonis D, Stournas S. Biodiesel production using tetramethyl-and benzyltrimethyl ammonium hydroxides as strong base catalysts. Fuel Processing Technology 2010;91:1585-90.
[126] Karavalakis G, Anastopoulos G, Stournas S. Tetramethylguanidine as an efficient catalyst for transesterification of waste frying oils. Applied Energy 2011;88:3645-50.
[127] Yao J, Ji L, Sun P, Zhang L, Xu N. Low boiling point organic amine-catalyzed transesterification of cottonseed oil to biodiesel with trace amount of KOH as co-catalyst. Fuel 2010;89:3871-5.
[128] Farag H, El-Maghraby A, Taha NA. Optimization of factors affecting esterification of mixed oil with high percentage of free fatty acid. Fuel Processing Technology 2011;92:507-10.
[129] Aranda DA, Santos RT, Tapanes NC, Ramos ALD, Antunes OAC. Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catalysis Letters 2008;122:20-5.
[130] Hanh HD, Dong NT, Okitsu K, Nishimura R, Maeda Y. Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition. Renewable Energy 2009;34:780-3.
[131] Guan G, Kusakabe K, Sakurai N, Moriyama K. Transesterification of vegetable oil to biodiesel fuel using acid catalysts in the presence of dimethyl ether. Fuel 2009;88:81-6.
[132] Zhang Y, Dube M, McLean D, Kates M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology 2003;89:1-16.
[133] Freedman B, Pryde E, Mounts T. Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists’ Society 1984;61:1638-43.
[134] Jacobson K, Gopinath R, Meher LC, Dalai AK. Solid acid catalyzed biodiesel production from waste cooking oil. Applied Catalysis B: Environmental 2008;85:86-91.
[135] Al-Widyan MI, Al-Shyoukh AO. Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresource Technology 2002;85:253-6.
[136] Guan Q, Shang H, Liu J, Gu J, Li B, Miao R, Chen Q, Ning P. Biodiesel from transesterification at low temperature by AlCl3 catalysis in ethanol and carbon dioxide as cosolvent: Process, mechanism and application. Applied Energy 2016;164:380-6.
[137] Miao X, Li R, Yao H. Effective acid-catalyzed transesterification for biodiesel production. Energy Conversion and Management 2009;50:2680-4.
[138] Papargyriou D, Broumidis E, de Vere-Tucker M, Gavrielides S, Hilditch P, Irvine JT, Bonaccorso AD. Investigation of solid base catalysts for biodiesel production from fish oil. Renewable Energy 2019;139:661-9.
[139] Malhotra R, Ali A. 5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil. Renewable Energy 2019;133:606-19.
[140] Dai YM, Wang YF, Chen CC. Synthesis and characterization of magnetic LiFe5O8-LiFeO2 as a solid basic catalyst for biodiesel production. Catalysis Communications 2018;106:20-4.
[141] Viola E, Blasi A, Valerio V, Guidi I, Zimbardi F, Braccio G, Giordano G. Biodiesel from fried vegetable oils via transesterification by heterogeneous catalysis. Catalysis Today 2012;179:185-90.
[142] Kaur M, Ali A. Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from karanja and jatropha oils. Renewable Energy 2011;36:2866-71.
[143] Kawashima A, Matsubara K, Honda K. Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresource Technology 2009;100:696-700.
[144] Tonetto GM, Marchetti JM. Transesterification of soybean oil over Me/Al2O3 (Me = Na, Ba, Ca, and K) catalysts and monolith K/Al2O3-cordierite. Topics in Catalysis 2010;53:755-62.
[145] Suryaputra W, Winata I, Indraswati N, Ismadji S. Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renewable Energy 2013;50:795-9.
[146] Liu X, He H, Wang Y, Zhu S, Piao X. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 2008;87:216-21.
[147] Correia LM, Saboya RMA, de Sousa Campelo N, Cecilia JA, Rodríguez-Castellón E, Cavalcante Jr CL, Vieira RS. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresource Technology 2014;151:207-13.
[148] Rezaei R, Mohadesi M, Moradi G. Optimization of biodiesel production using waste mussel shell catalyst. Fuel 2013;109:534-41.
[149] Jeon H, Kim DJ, Kim SJ, Kim JH. Synthesis of mesoporous MgO catalyst templated by a PDMS–PEO comb-like copolymer for biodiesel production. Fuel Processing Technology 2013;116:325-31.
[150] Almerindo GI, Probst LF, Campos CE, De Almeida RM, Meneghetti SM, Meneghetti MR, Clacens JM, Fajardo HV. Magnesium oxide prepared via metal–chitosan complexation method: application as catalyst for transesterification of soybean oil and catalyst deactivation studies. Journal of Power Sources 2011;196:8057-63.
[151] Kazemian H, Turowec B, Siddiquee MN, Rohani S. Biodiesel production using cesium modified mesoporous ordered silica as heterogeneous base catalyst. Fuel 2013;103:719-24.
[152] Rubio-Caballero JM, Santamaría-González J, Mérida-Robles J, Moreno-Tost R, Alonso-Castillo ML, Vereda-Alonso E, Jiménez-López A, Maireles-Torres P. Calcium zincate derived heterogeneous catalyst for biodiesel production by ethanolysis. Fuel 2013;105:518-22.
[153] Santiago-Torres N, Romero-Ibarra IC, Pfeiffer H. Sodium zirconate (Na2ZrO3) as a catalyst in a soybean oil transesterification reaction for biodiesel production. Fuel Processing Technology 2014;120:34-9.
[154] Rashtizadeh E, Farzaneh F, Talebpour Z. Synthesis and characterization of Sr3Al2O6 nanocomposite as catalyst for biodiesel production. Bioresource Technology 2014;154:32-7.
[155] Dias APS, Bernardo J, Felizardo P, Correia MJN. Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites. Energy 2012;41:344-53.
[156] Wang SH, Wang YB, Dai YM, Jehng JM. Preparation and characterization of hydrotalcite-like compounds containing transition metal as a solid base catalyst for the transesterification. Applied Catalysis A: General 2012;439:135-41.
[157] Li J, Fu YJ, Qu XJ, Wang W, Luo M, Zhao CJ, Zu YG. Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst. Bioresource Technology 2012;108:112-8.
[158] Melero JA, Bautista LF, Morales G, Iglesias J, Sánchez-Vázquez R. Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts. Chemical Engineering Journal 2010;161:323-31.
[159] García-Sancho C, Moreno-Tost R, Mérida-Robles JM, Santamaría-González J, Jiménez-López A, Maireles-Torres P. Niobium-containing MCM-41 silica catalysts for biodiesel production. Applied Catalysis B: Environmental 2011;108:161-7.
[160] Patel A, Brahmkhatri V, Singh N. Biodiesel production by esterification of free fatty acid over sulfated zirconia. Renewable Energy 2013;51:227-33.
[161] Zhang Y, Wong WT, Yung KF. Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia. Applied Energy 2014;116:191-8.
[162] Jiménez-López A, Jiménez-Morales I, Santamaría-González J, Maireles-Torres P. Biodiesel production from sunflower oil by tungsten oxide supported on zirconium doped MCM-41 silica. Journal of Molecular Catalysis A: Chemical 2011;335:205-9.
[163] Xie W, Yang D. Transesterification of soybean oil over WO3 supported on AlPO4 as a solid acid catalyst. Bioresource Technology 2012;119:60-5.
[164] Costa AA, Braga PR, de Macedo JL, Dias JA, Dias SC. Structural effects of WO3 incorporation on USY zeolite and application to free fatty acids esterification. Microporous and Mesoporous Materials 2012;147:142-8.
[165] Borges LD, Moura NN, Costa AA, Braga PR, Dias JA, Dias SC, de Macedo JL, Ghesti GF. Investigation of biodiesel production by HUSY and Ce/HUSY zeolites: influence of structural and acidity parameters. Applied Catalysis A: General 2013;450:114-9.
[166] Vieira SS, Magriotis ZM, Santos NA, Saczk AA, Hori CE, Arroyo PA. Biodiesel production by free fatty acid esterification using lanthanum (La3+) and HZSM-5 based catalysts. Bioresource Technology 2013;133:248-55.
[167] Alhassan FH, Yunus R, Rashid U, Sirat K, Islam A, Lee HV, Taufiq-Yap YH . Production of biodiesel from mixed waste vegetable oils using Ferric hydrogen sulphate as an effective reusable heterogeneous solid acid catalyst. Applied Catalysis A: General 2013;456:182-7.
[168] Narkhede N, Patel A. Biodiesel production by esterification of oleic acid and transesterification of soybean oil using a new solid acid catalyst comprising 12-tungstosilicic acid and zeolite Hβ. Industrial & Engineering Chemistry Research 2013;52:13637-44.
[169] Li Y, Zhang XD, Sun L, Xu M, Zhou WG, Liang XH. Solid superacid catalyzed fatty acid methyl esters production from acid oil. Applied Energy 2010;87:2369-73.
[170] Poonjarernsilp C, Sano N, Tamon H. Hydrothermally sulfonated single-walled carbon nanohorns for use as solid catalysts in biodiesel production by esterification of palmitic acid. Applied Catalysis B: Environmental 2014;147:726-32.
[171] Dawodu FA, Ayodele O, Xin J, Zhang S, Yan D. Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst. Applied Energy 2014;114:819-26.
[172] Jiang Y, Lu J, Sun K, Ma L, Ding J. Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: experimental and kinetic studies. Energy Conversion and Management 2013;76:980-5.
[173] Wang YT, Yang XX, Xu J, Wang HL, Wang ZB, Zhang L, Wang SL, Liang JL. Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst. Renewable Energy 2019;139:688-95.
[174] Gardy J, Osatiashtiani A, Céspedes O, Hassanpour A, Lai X, Lee AF, Wilson K, Rehan M. A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Applied Catalysis B: Environmental 2018;234:268-78.
[175] Ibrahim MM, Mahmoud HR, El-Molla SA. Influence of support on physicochemical properties of ZrO2 based solid acid heterogeneous catalysts for biodiesel production. Catalysis Communications 2019;122:10-5.
[176] Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P. Production of biodiesel using immobilized lipase—a critical review. Critical Reviews in Biotechnology 2008;28:253-64.
[177] Lu J, Chen Y, Wang F, Tan T. Effect of water on methanolysis of glycerol trioleate catalyzed by immobilized lipase Candida sp. 99–125 in organic solvent system. Journal of Molecular Catalysis B: Enzymatic 2009;56:122-5.
[178] Lai JQ, Hu ZL, Wang PW, Yang Z. Enzymatic production of microalgal biodiesel in ionic liquid [BMIm][PF6]. Fuel 2012;95:329-33.
[179] Modi MK, Reddy J, Rao B, Prasad R. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresource Technology 2007;98:1260-4.
[180] Kumar D, Das T, Giri BS, Rene ER, Verma B. Biodiesel production from hybrid non-edible oil using bio-support beads immobilized with lipase from Pseudomonas cepacia. Fuel 2019;255:115801.
[181] Raoufi Z, Gargari SLM. Biodiesel production from microalgae oil by lipase from Pseudomonas aeruginosa displayed on yeast cell surface. Biochemical Engineering Journal 2018;140:1-8.
[182] Wang J, Li K, He Y, Wang Y, Han X, Yan Y. Enhanced performance of lipase immobilized onto Co2+-chelated magnetic nanoparticles and its application in biodiesel production. Fuel 2019;255:115794.
[183] Murillo G, Ali SS, Sun J, Yan Y, Bartocci P, El-Zawawy N, Azab M, He Y, Fantozzi F. Ultrasonic emulsification assisted immobilized Burkholderia cepacia lipase catalyzed transesterification of soybean oil for biodiesel production in a novel reactor design. Renewable Energy 2019;135:1025-34.
[184] Xie W, Wang J. Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass and Bioenergy 2012;36:373-80.
[185] Yang Z, Zhang KP, Huang Y, Wang Z. Both hydrolytic and transesterification activities of Penicillium expansum lipase are significantly enhanced in ionic liquid [BMIm][PF6]. Journal of Molecular Catalysis B: Enzymatic 2010;63:23-30.
[186] Sim JH, Kamaruddin AH, Bhatia S. Biodiesel (FAME) productivity, catalytic efficiency and thermal stability of lipozyme TL IM for crude palm oil transesterification with methanol. Journal of the American Oil Chemists' Society 2010;87:1027-34.
[187] Kumari A, Mahapatra P, Garlapati VK, Banerjee R. Enzymatic transesterification of Jatropha oil. Biotechnology for Biofuels 2009;2:1.
[188] Yan J, Yan Y, Liu S, Hu J, Wang G. Preparation of cross-linked lipase-coated micro-crystals for biodiesel production from waste cooking oil. Bioresource Technology 2011;102:4755-8.
[189] Salis A, Pinna M, Monduzzi M, Solinas V. Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology 2005;119:291-9.
[190] Nelson LA, Foglia TA, Marmer WN. Lipase-catalyzed production of biodiesel. Journal of the American Oil Chemists’ Society 1996;73:1191-5.
[191] Khedri B, Mostafaei M, Safieddin Ardebili SM. A review on microwave-assisted biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2019;41:2377-95.
[192] Nayak MG, Vyas AP. Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology. Renewable Energy 2019;138:18-28.
[193] Chellappan S, Aparna K, Chingakham C, Sajith V, Nair V. Microwave assisted biodiesel production using a novel Brønsted acid catalyst based on nanomagnetic biocomposite. Fuel 2019;246:268-76.
[194] Falowo OA, Oloko-Oba MI, Betiku E. Biodiesel production intensification via microwave irradiation-assisted transesterification of oil blend using nanoparticles from elephant-ear tree pod husk as a base heterogeneous catalyst. Chemical Engineering and Processing-Process Intensification 2019;140:157-70.
[195] Almasi S, Ghobadian B, Najafi GH, Yusaf T, Dehghani Soufi M, Hoseini SS. Optimization of an ultrasonic-assisted biodiesel production process from one genotype of rapeseed (TERI (OE) R-983) as a novel feedstock using response surface methodology. Energies 2019;12:2656.
[196] Gusniah A, Veny H, Hamzah F. Ultrasonic assisted enzymatic transesterification for biodiesel production. Industrial & Engineering Chemistry Research 2018;58:581-9.
[197] de Medeiros EF, Vieira BM, de Pereira CMP, Nadaleti WC, Quadro MS, Andreazza R. Production of biodiesel using oil obtained from fish processing residue by conventional methods assisted by ultrasonic waves: heating and stirring. Renewable Energy 2019;143:1357-65.
[198] Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H. A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Bioresource Technology 2010;101:5394-401.
[199] Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008;76:965-77.
[200] Mäkelä M. Experimental design and response surface methodology in energy applications: a tutorial review. Energy Conversion and Management 2017;151:630-40.
[201] Arteaga G, Li-Chan E, Vazquez-Arteaga M, Nakai S. Systematic experimental designs for product formula optimization. Trends in Food Science & Technology 1994;5:243-54.
[202] Kim KH, Lee OK, Kim CH, Seo JW, Oh BR, Lee EY. Lipase-catalyzed in-situ biosynthesis of glycerol-free biodiesel from heterotrophic microalgae, Aurantiochytrium sp. KRS101 biomass. Bioresource Technology 2016;211:472-7.
[203] Lin YC, Yang PM, Chen SC, Lin JF. Improving biodiesel yields from waste cooking oil using ionic liquids as catalysts with a microwave heating system. Fuel Processing Technology 2013;115:57-62.
[204] Uprety BK, Chaiwong W, Ewelike C, Rakshit SK. Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity. Energy Conversion and Management 2016;115:191-9.
[205] American standards for testing of materials (ASTM). D1480, D93, D5453, D7371, D664, D445, D93, D613, D6751. St. Joseph, MI, ASAE; 2003.
[206] Lotti M, Pleiss J, Valero F, Ferrer P. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel. Biotechnology Journal 2015;10:22-30.
[207] Dizge N, Keskinler B. Enzymatic production of biodiesel from canola oil using immobilized lipase. Biomass and Bioenergy 2008;32:1274-8.
[208] Köse Ö, Tüter M, Aksoy HA. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresource Technology 2002;83:125-9.
[209] Shieh CJ, Liao HF, Lee CC. Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresource Technology 2003;88:103-6.
[210] Fjerbaek L, Christensen KV, Norddahl B. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnology and Bioengineering 2009;102:1298-315.
[211] Chen JW, Wu WT. Regeneration of immobilized Candida antarctica lipase for transesterification. Journal of Bioscience and Bioengineering 2003;95:466-9.
[212] Du W, Xu Y, Liu D, Zeng J. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B: Enzymatic 2004;30:125-9.
[213] Subhedar PB, Gogate PR. Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. Ultrasonics Sonochemistry 2016;29:67-75.
[214] Xu Y, Du W, Liu D. Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor. Journal of Molecular Catalysis B: Enzymatic 2005;32:241-5.
[215] Razack SA, Duraiarasan S. Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. Waste Management 2016;47:98-104.
[216] Calero J, Verdugo C, Luna D, Sancho ED, Luna C, Posadillo A, Bautista FM, Romero AA. Selective ethanolysis of sunflower oil with Lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation. New Biotechnology 2014;31:596-601.
[217] Waghmare GV, Rathod VK. Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition. Ultrasonics Sonochemistry 2016;32:60-7.
[218] Wu H, Liu Y, Zhang J, Li G. In situ reactive extraction of cottonseeds with methyl acetate for biodiesel production using magnetic solid acid catalysts. Bioresource Technology 2014;174:182-9.
[219] Maddikeri GL, Pandit AB, Gogate PR. Ultrasound assisted interesterification of waste cooking oil and methyl acetate for biodiesel and triacetin production. Fuel Processing Technology 2013;116:241-9.
[220] Chang HM, Liao HF, Lee CC, Shieh CJ. Optimized synthesis of lipase‐catalyzed biodiesel by Novozym 435. Journal of Chemical Technology & Biotechnology 2005;80:307-12.
[221] Amini Z, Ong HC, Harrison MD, Kusumo F, Mazaheri H, Ilham Z. Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Conversion and Management 2017;132:82-90.
[222] Amini Z, Ilham Z, Ong HC, Mazaheri H, Chen WH. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management 2017;141:339-53.
[223] Alavijeh RS, Tabandeh F, Tavakoli O, Karkhane A, Shariati P. Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor. Journal of Oleo Science 2015;64:69-74.
[224] Usai E, Gualdi E, Solinas V, Battistel E. Simultaneous enzymatic synthesis of FAME and triacetyl glycerol from triglycerides and methyl acetate. Bioresource Technology 2010;101:7707-12.
[225] Nordblad M, Pedersen AK, Rancke‐Madsen A, Woodley JM. Enzymatic pretreatment of low‐grade oils for biodiesel production. Biotechnology and Bioengineering 2016;113:754-60.
[226] Barekati-Goudarzi M, Boldor D, Nde DB. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN 3) using hexane as co-solvent: biodiesel production and process optimization. Bioresource Technology 2016;201:97-104.
[227] Zhang Y, Li Y, Zhang X, Tan T. Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Bioresource Technology 2015;196:712-5.
[228] Liu B, Zhao ZK. Biodiesel production by direct methanolysis of oleaginous microbial biomass. Journal of Chemical Technology and Biotechnology 2007;82:775-80.
[229] Religia P, Wijanarko A. Utilization of n-hexane as co-solvent to increase biodiesel yield on direct transesterification reaction from marine microalgae. Procedia Environmental Sciences 2015;23:412-20.
[230] Talebian-Kiakalaieh A, Amin NAS, Mazaheri H. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy 2013;104:683-710.
[231] Sulaiman S, Aziz AA, Aroua MK. Reactive extraction of solid coconut waste to produce biodiesel. Journal of the Taiwan Institute of Chemical Engineers 2013;44:233-8.
[232] Malekzadeh M, Najafabadi HA, Hakim M, Feilizadeh M, Vossoughi M, Rashtchian D. Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris. Bioresource Technology 2016;201:304-11.
[233] Gao L, Wang S, Xu W, Xiao G. Biodiesel production from palm oil over monolithic KF/γ-Al2O3/honeycomb ceramic catalyst. Applied Energy 2015;146:196-201.
[234] Singh V, Bux F, Sharma YC. A low cost one pot synthesis of biodiesel from waste frying oil (WFO) using a novel material, β-potassium dizirconate (β-K2Zr2O5). Applied Energy 2016;172:23-33.
[235] Johnson MB, Wen Z. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy & Fuels 2009;23:5179-83.
[236] Yellapu SK, Kaur R, Tyagi RD. Detergent assisted ultrasonication aided in situ transesterification for biodiesel production from oleaginous yeast wet biomass. Bioresource Technology 2017;224:365-72.
[237] Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL. Green chemistry: reversible nonpolar-to-polar solvent. Nature 2005;436:1102.
[238] Du Y, Schuur B, Samorì C, Tagliavini E, Brilman DWF. Secondary amines as switchable solvents for lipid extraction from non-broken microalgae. Bioresource Technology 2013;149:253-60.
[239] Bao J, Liu Y, Parnas R, Liang B, Lu H. Inter-solubility of product systems in biodiesel production from Jatropha curcas L. oil with the switchable solvent DBU/methanol. RSC Advances 2015;5:8311-7.
[240] Xue D, Mu Y, Mao Y, Yang T, Xiu Z. Kinetics of DBU-catalyzed transesterification for biodiesel in the DBU–ethanol switchable-polarity solvent. Green Chemistry 2014;16:3218-23.
[241] Cao X, Xie H, Wu Z, Shen H, Jing B. Phase‐switching homogeneous catalysis for clean production of biodiesel and glycerol from soybean and microbial lipids. ChemCatChem 2012;4:1272-8.
[242] Zeng S, Tao C, Parnas R, Jiang W, Liang B, Liu Y, Lu H. Jatropha curcas L. oil extracted by switchable solvent N, N-dimethylcyclohexylamine for biodiesel production. Chinese Journal of Chemical Engineering 2016;24:1640-6.
[243] Du Y, Schuur B, Brilman DW. Maximizing lipid yield in Neochloris oleoabundans algae extraction by stressing and using multiple extraction stages with N-Ethylbutylamine as switchable solvent. Industrial & Engineeing Chemistry Research 2017;56:8073-80.
[244] Phan L, Brown H, White J, Hodgson A, Jessop PG. Soybean oil extraction and separation using switchable or expanded solvents. Green Chemistry 2009;11:53-9.
[245] Munshi MK, Biradar PS, Gade SM, Rane VH, Kelkar AA. Efficient synthesis of glycerol carbonate/glycidol using 1, 8-diazabicyclo [5.4.0] undec-7-ene (DBU) based ionic liquids as catalyst. RSC Advances 2014;4:17124-8.
[246] Knothe G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science 2009;2:759-66.
[247] Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology 2009;100:261-8.
[248] Knothe G. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy & Fuels 2008;22:1358-64.
[249] European Standard, EN 14214. Automotive fuels-fatty acid methyl esters (FAME) for diesel engines-requirements and test methods; 2008.
[250] Feng Y, Zhang A, Li J, He B. A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst. Bioresource Technology 2011;102:3607-9.
[251] Nielsen P, Rancke-Madsen A, Holm H, Burton R. Production of biodiesel using liquid lipase formulations. Journal of the American Oil Chemists' Society 2016;93:905-10.
[252] Mello PdA, Duarte FA, Nunes MA, Alencar MS, Moreira EM, Korn M, Dressler VL, Flores EM. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock. Ultrasonics Sonochemistry 2009;16:732-6.
[253] Shu Q, Yang B, Yang J, Qing S. Predicting the viscosity of biodiesel fuels based on the mixture topological index method. Fuel 2007;86:1849-54.

無法下載圖示 全文公開日期 2024/11/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE