簡易檢索 / 詳目顯示

研究生: 陳揚斌
Yang-Pin Chen
論文名稱: 高效率LLC同步整流串聯諧振轉換器之研製
Study and Implementation of a High-Efficiency LLC Series Resonant Converter with Synchronous Rectification
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 劉益華
Yi-hua Liu
歐勝源
Sheng-yuan Ou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 121
中文關鍵詞: 串聯諧振轉換器零電壓切換同步整流
外文關鍵詞: Series resonant converter, zero-voltage switching, synchronous rectification
相關次數: 點閱:613下載:53
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要研製一高效率LLC同步整流串聯諧振轉換器。此電源供應器全機結構包含前端的電磁干擾濾波器,可有效濾除系統端雜訊所造成的干擾問題,前級使用升壓型主動功率因數修正器,以提升電路操作時的功率因數,減低其電流諧波成分,進而達到良好的電力品質。後級採用LLC串聯諧振轉換器,並藉由提高切換頻率以縮小磁性元件的體積,且利用零電壓切換與同步整流技術,以達到高功率密度及高轉換效率的要求。另外,加入保護電路(OVP、OCP、SCP),以避免電源供應器內部元件在不正常的操作下受到損害。文中除了說明兩個主架構的動作原理外,並詳細說明了設計考量與電路中重要元件值之規格,且搭配Mathcad模擬軟體模擬串聯諧振電路輸出電壓頻率響應圖,了解品質因數Q、K因子與特性阻抗Zo對曲線的影響。最後進行分析找出合適之操作點。
本文實作出一台AC/DC電源供應器,輸入電壓90 ~264 Vac、輸出電壓DC 12V、輸出滿載電流20A。全機效率在115 Vac交流輸入且滿載下高達90%。在20%、50%、75%、100%四種負載情況之四點平均效率下,交流輸入電壓115Vac可達89.5%,230Vac可達90.7%,證明電路從輕載至滿載皆保持高轉換效率且輸出穩壓率皆小於±1%,最後估計全機功率損耗,並研擬未來研究方向。


This thesis focuses on the study and implementation of a high-efficiency LLC series resonant converter (SRC) with synchronous rectification. An EMI filter is used to suppress the conducted noise resulted from the switching device and the parasitics. The front-end part of the converter is a boost power factor corrector (PFC) to eliminate the current harmonics and raise the input power factor. The second stage is a high-frequency LLC SRC. In order to further improve the efficiency and increase the power density, zero-voltage switching and synchronous rectification technologies are adopted. The main controller features several protection circuits to protect the power converter. The operations and mathematical analysis for the PFC and LLC SRC are discussed. For the LLC SRC, the relationships among the voltage gain, quality factor (Q), inductor ratio (K) and characteristic impedance (Zo) have been analyzed and simulated with Mathcad.
Finally, the experimental results from the implemented prototype converter with an ac input voltage of 90 ~ 264 Vac, a dc output voltage of 12 V and the rated output load of 20 A are measured. The overall efficiency is up to 90 % for the full load condition. And the average efficiency is 89.5 % for 20-%、50-%、75-% and 100-% load conditions at the ac input voltage of 115 Vac ,and 90.7 % at 230 Vac.

摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 符號索引 vii 圖索引 xii 表索引 xvi 第一章 緒論1 1.1 研究動機1 1.2 研究目的2 第二章 系統簡介與內容大綱 3 2.1 系統簡介3 2.2 論文內容大綱6 第三章 功率因數修正器之架構與原理 7 3.1 功率因數與總諧波失真之定義 7 3.2 功率因數修正器之種類11 3.2.1 被動式功率因數修正器11 3.2.2 主動式功率因數修正器12 3.3 升壓型功率因數修正器之電路架構14 3.4 功率因數修正器之控制方式15 第四章 串聯諧振式轉換器架構與原理21 4.1 LC串聯諧振電路簡介[29]21 4.2 理想RLC串聯諧振電路23 4.3 零電流切換與零電壓切換[30]25 4.4 半橋串聯諧振式轉換器26 4.4.1 SRC諧振模式28 4.4.2 LLC諧振模式30 4.4.3 SRC與LLC之比較32 4.5 LLC串聯諧振轉換器之動作分析 33 4.6 諧振槽之分析與模擬 40 4.6.1 品質因數Q值及K因子對頻率響應的影響41 4.6.2 特性阻抗Zo對頻率響應之影響43 4.7 LLC輸出同步整流技術44 4.7.1 同步整流技術之優點 44 4.7.2 輸出同步整流訊號控制47 第五章 整機電源轉換器之設計49 5.1 主動功率因數修正器之電路設計49 5.1.1 控制IC NCP165449 5.1.2 主動功率因數修正器電路規格 51 5.1.3 主動功率因數修正器功率級元件設計52 5.2 半橋串聯諧振式轉換器電路設計58 5.2.1 控制IC L659958 5.2.2 半橋串聯諧振式轉換器電路規格60 5.2.3 半橋串聯諧振式轉換器功率級元件設計60 第六章 實驗數據與實驗結果 74 6.1 整機AC/DC轉換器之規格74 6.2 PFC之量測波形75 6.3 LLC串聯諧振式轉換器之量測波形79 6.4 保護電路之實測波形 85 6.5 輸出維持時間之量測波形87 6.6 PFC單級量測數據87 6.7 LLC串聯諧振式轉換器單級量測數據89 6.8 全機量測數據89 6.9 全機功率損失計算90 6.9.1 主動功率因數修正器損耗分析90 6.9.2 LLC串聯諧振式轉換器損耗分析93 6.9.3 輔助電源所需之功率與其他損失97 6.9.4 全機功率損耗分析97 6.10 電路實體照片98 第七章 總結與未來展望99 7.1 總結99 7.2 未來研究方向100 參考文獻 101

[1]宋自恆、林慶仁,「功率因數修正器之原理與常用元件規格」,新電子科技雜誌217期,民國93年4月。
[2]F. C. Lee, “High-Frequency Quasi-Resonant and Multi-Resonant Converter Technologies,” IEEE IECON, pp. 509-521, 1988.
[3]J. G. Cho, J. A. Sabate, and F. C. Lee, “Novel Full Bridge Zero-Voltage-Transition PWM DC/DC Converter for High Power Applications,” IEEE PESC, pp. 143-149, 1994.
[4]J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS Analysis of Asymmetrical Half-Bridge Converter,” IEEE PESC, vol. 1, pp. 243-247, 2001.
[5]J. W. Baek, J. G. Cho, D. W. Yoo, G.H. Rim, and H.G. Kim, “An Improved Zero Voltage and Zero Current Switching Full Bridge PWM Converter with Secondary Active Clamp”, IEEE PESC, pp. 948-954. 1998.
[6]C. M. Wang, “A New Family of Zero-Current-Switching (ZCS) PWM Converter,” IEEE Transactions on Industrial Electronics, Vol. 52, pp. 1117-1125, 2005.
[7]A. K. S. Bhat, “Analysis and Design of a Modified Series Resonant Converter,” IEEE Transactions on Power Electronics, pp. 423-430, 1993.
[8]M. K. Kazimierczuk, and S. Wong, “Frequency-Domain Analysis of Series Resonant Converter for Continuous Conduction Mode,” IEEE Transactions on Power Electronics, Vol. 6, pp. 270-279, 1992.
[9]M. K. Kazimierczuk, and D. Czarkowski, “Resonant Power Converters,” Wiley-Interscience publication, ISBN 0-471-04706-6.
[10]R. Liu, C. Q. Lee, and A. K. Upadhyay, “Experimental Study of the LLC-type Series Resonant Converter,“ IEEE APEC, pp. 31-37, 1990.
[11]B. Yang, F. C. Lee, A. J. Zhang, and G. S. Huang, “LLC Resonant Converter for Front End DC/DC Conversion,” IEEE APEC, pp. 1108-1112, 2002.
[12]B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. Van Wyk, “Optimal Design Methodology for LLC Resonant Converter,” IEEE APEC, pp. 533–538. 2006.
[13]L. Yan, L. Wenduo, L. Bing, and D. J. Wyk, “Design of Integrated Passive Component for a 1MHz 1KW Half-Bridge LLC Resonant Converter,” IEEE IAC, vol.3, pp. 2223-2228, 2005.
[14]R. Cheng, Y. Yang, and Y. Jiang, “Design of LLC Resonant Converter with Integrated Magnetic Technology,” IEEE ICEMS, vol. 2, pp. 1351-1355, 2005.
[15]B. Yang, “Topology Investigation for Front End DC/DC Power Conversion for Distributed Power,” Ph.D. Dissertation, Virginia Tech, 2003.
[16]International Electrotechnical Commission, 2007: http://www.iec.ch/
[17]Energy Star, 2007: http://www.energystar.gov/
[18]European Commission, 2007: http://ec.europa.eu/index_en.htm
[19]Richard Lee Ozenbaugh, EMI Filter Design, Marcel Dekker, Inc. 1996.
[20]N. Mohan, T.-M. Undeland, and W.-P. Robbins, “Power electronics,” Third Edition.
[21]劉建宏,「高效率低空載損耗之200W穩壓器研製」,國立台灣科技大學電子工程系研究所碩士論文,民國96年。
[22]P. N. Enjeti, and R. Martinez, “A High Performance Single Phase AC to DC Rectifier with Input Power Factor Correction,” IEEE Proc. APEC’93, pp. 190-195, 1993.
[23]R. Srinivasan, and R. Oruganti, “A Unity Power Factor Converter Using Half-Bridge Boost Topology,” IEEE Trans. Power Electronics, vol. 13, no. 3, pp. 487-499, 1998.
[24]B. P. Divakar, and D. Suanto, “A New Boost Power Factor Pre-Regulator,” IEEE Proc. PEDS’99, vol. 2, pp. 915-920, 1999.
[25]曾軍皓,「高效能功率因數修正器研製」,國立台灣科技大學電子工程系研究所碩士論文,民國95年。
[26]C. A. Canesin, and I. Barbi, “Analysis and Design of Constant-Frequency Peak-Current-Controlled High-Power-Factor Boost Rectifier with Slope Compensation,” APEC '96., Vol. 2, pp. 807-813, March 1996.
[27]Chen Zhou, Active Boost Power Factor Analysis and Design, IBM Corporation, April 20, 1989.
[28]M. F. Schlecht, and B. A. Miwa, “Active Power Factor Correction for Switching Power Supplies,” IEEE Transactions on Power Electronics, Vol 1. PE-2, No. 4. October 1987.
[29]Mohan.Undeland.Robbin 著,江炫樟編譯,“電力電子學”,第三版,民國92年,全華科技圖書。
[30]Bildgen M., “Resonant Converter Topologies”, STMicroelectronics, AN658, November 1994.
[31]Fairchild Semiconductor, “Half-bridge LLC Resonant Converter Design Using FSFR-series Fairchild Power Switch,” Application Note AN-4151, 2007.
[32]International Rectifier, “IR1167ASPbF, IR1167BSPbF SmartRectifierTM CONTROL IC,” Data Sheet PD60254A, 2006.
[33]Ya Liu, “High Efficiency Optimization of LLC Resonant Converter for Wide Load Range,” Blacksburg, Virginia, December 4th, 2007.
[34]ON Semiconductor, NCP1654, “Power Factor Controller for Compact and Robust, Continuous Conduction Mode Pre-Converters,” Data Sheet, Rev.1, 2008.
[35]郭啟業,「非對稱半橋之研製」,國立台灣科技大學電子工程系研究所碩士論文,民國94年。
[36]Shindengen, “D10XB60 FULL BRIDGE RECTIFIERS,” Data Sheet, 2002.
[37]Infineon Technologies, “SPP21N50C3 POWER TRANSISTOR,” Data Sheet, 2003.
[38]Shindengen, “SF10L60U FAST RECOVERY RECTIFIERS,” Data Sheet, 2000.
[39]ST Microelectronics, “L6599 HIGH-VOLTAGE RESONANT CONTROLLER,” Data Sheet, 2005.
[40]G. C. Chryssis, “High Frequency Switching Power Supplies: Theory & Design,” McGraw-Hill, 1989.
[41]A. I. Pressman, “Switching Power Supply Design,” Second Edition, McGraw-Hill, 1999.
[42]International Rectifier, “IRF2804 AUTOMOTIVE MOSFET,” Data Sheet PD-95332A, 2005.
[43]王智弘,「AC/DC電源晶片改朝換代」,新電子科技雜誌251期,民國96年2月。

QR CODE