簡易檢索 / 詳目顯示

研究生: 李家彤
Jia-Tong Li
論文名稱: 探討氣體霧化法製備之AlCrFeNiSi高熵合金粉末性質
Study on the properties of gas-atomized AlCrFeNiSi high-entropy alloy powder
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 陳建光
Jem-Kun Chen
陳柏均
Po-Chun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: 高熵合金氣體霧化法AlCrFeNiSi相變化退火熱處理
外文關鍵詞: High-entropy alloy, Gas atomization, AlCrFeNiSi, Annealing, Phase transformation
相關次數: 點閱:233下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究以氣體霧化法製備AlCrFeNiSi高熵合金粉末,改善高熵合金塊材熔煉中成分不均、易產生缺陷等問題,依應用目的將粉末粒徑篩分為四組:<10 μm適用於粉末冶金;10-60 μm適用於噴塗;60-120 μm適用於積層製造及其餘>120 μm,為提升應用價值,需進一步探討此合金系統的性質及冶金行為等,以利未來預測產品性能,並進行後續加工。
  以氣體霧化法製備之AlCrFeNiSi高熵合金粉末晶體結構以BCC相為主,且各元素均勻分佈,形成五元素隨機排列而成的無序BCC相,然而當粒徑越大,粉末內部冷卻速度變慢,殘留熱能使內部元素開始發生擴散,逐漸析出微量Hexagonal相以及A15相。故本實驗選用最接近初始狀態的<10 μm粉末施以退火熱處理,分別以時間及溫度作為變數,探討此合金系統完整的相演變過程。
  於相變溫度700℃持溫1小時,晶體結構轉變為BCC/B2+Hexagonal+A15,再將持溫時間增加至24小時,並無其他相再生成;將熱處理溫度提升至1100℃,晶體結構轉變為BCC/B2+Hexagonal+A15+BCC/L21,配合EBSD進行相鑑定,結果顯示基底為NiAl構成之BCC/B2相,其中有富含Fe之條狀析出物相間,是由Fe¬3Si構成之BCC/L21相,此外還有Fe5Si3構成之Hexagonal相,以及由Cr3Si構成之A15相。
  機械性質方面,經700℃持溫1小時後,平均硬度由初始的3.29 GPa上升至4.84 GPa,達到細晶強化之效果;於700℃持溫24小時後,晶粒成長使硬度略降至3.93 GPa;1100℃持溫1小時由於大量析出物產生,平均硬度上升至13.22 GPa,達到析出硬化之效果,高硬度主要由A15相所貢獻,次高硬度為L21相及Hexagonal相,低硬度則為B2相。
  由熱力學演算結果指出,此合金並不傾向形成固溶體,判斷為元素間的高負值混合焓所致,其中以Si的貢獻最為顯著,因此於熱處理實驗中易形成含Si之介金屬化合物,此外,亦計算出此系統傾向形成BCC相,皆與實驗結果相符。


  In this study, the AlCrFeNiSi powders were fabricated by the gas-atomization method and sieved into four groups by their applications, which were <10μm for powder metallurgy, 10-60μm for spray coating, 60-120μm for additive Manufacturing, and >120μm, respectively. The properties of AlCrFeNiSi powders were investigated to enhance the prospect of its applications.
  The phase transformation in different particle sizes is due to the slight difference in the cooling rate of the powders. The powders with a particle size of <10μm is the closest to metastable state. Therefore, in this study, heat treatment was used, and time and temperature were used as variables to investigated the phase transformation of <10μm AlCrFeNiSi powders. At 700°C, with the increase of heat treatment time, the crystal structure can be stabilized after 1 hour, and then no new phase was formed. The crystal structure was transformed from disordered BCC+Hexagonal into B2+Hexagonal+A15. With the increase of heat treatment temperature, at 1100°C, the crystal structure was transformed into B2+Hexagonal+A15+L21, which is caused by Fe-rich precipitates, so that Hexagonal composed of Fe5Si3 was transformed into L21 composed of Fe3Si with a higher proportion of Fe. In-situ XRD showed that B2 phase always existed in the crystal structure. The shift of the diffraction peak meant that the lattice constant changed. First, the lattice constant became smaller because of the stress relief of the lattice and homogenization, and then the disordered BCC phase formed by the random arrangement of five elements is gradually transformed into B2 phase composed of NiAl. Since the atomic radius of Al was the largest among the five elements, the lattice constant increased.
  In terms of mechanical properties, it was measured that the average hardness of <10μm AlCrFeNiSi powders was improved from 3.29GPa to 4.84GPa after heat treatment at 700℃ for 1 hour due to the grain refinement, and the average hardness decreased to 3.93GPa after heat treatment at 700℃ for 24 hours due to the grain growth. The hardness was not uniform after heat treatment at 1100℃ for 1 hour because A15 phase presented high hardness, B2 phase presented low hardness, and the hardness of L21 phase was between A15 and B2, and the average hardness was improved to 13.22GPa due to the precipitation strengthening.
  As the result of thermodynamic calculation, AlCrFeNiSi high entropy alloy would not tend to form solid solutions due to the negative enthalpy of mixing, with a significant contribution from Si. It also indicated that this high entropy alloy tends to form BCC phase. The thermodynamic calculations were in line with the experimental results.

摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第1章 前言 1 第2章 文獻回顧 3 2.1 高熵合金的發展背景 3 2.2 高熵合金的定義 4 2.3 高熵合金的四大核心效應 5 2.4 高熵合金的熱力學演算 10 2.4.1 固溶體之形成 10 2.4.2 晶體結構之形成 12 2.5 高熵合金的系統 13 2.6 高熵合金的製程技術 19 2.7 高熵合金的應用 22 2.8 前導文獻回顧與研究動機總結 23 第3章 實驗方法 25 3.1 實驗流程 25 3.2 實驗參數 26 3.2.1 粉末粒徑 26 3.2.2 熱處理參數 26 3.3 實驗分析樣品製備 28 3.3.1 熱處理樣品製備 28 3.3.2 微觀結構及機械性質分析樣品製備 28 3.4 實驗分析及儀器原理 29 3.4.1 光學顯微鏡 (Optical Microscope, OM) 29 3.4.2 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 30 3.4.3 能量色散X射線光譜儀 (Energy Dispersive X-ray Spectrometer, EDS) 31 3.4.4 電子背向散射繞射分析儀(Electron Backscatter Diffraction, EBSD) 32 3.4.5 X射線繞射分析儀 (X-Ray Diffraction, XRD) 34 3.4.6 熱重-熱示差同步分析儀 (Simultaneous Thermal Analyzer, STA) 36 3.4.7 奈米壓痕機械性質分析儀 (Nanoindenter) 37 第4章 結果與討論 38 4.1 氣體霧化法製備之高熵合金粉末基礎性質 38 4.2 熱處理持溫時間對高熵合金粉末之影響 43 4.2.1 晶體結構分析 43 4.2.2 微觀結構及元素分佈分析 45 4.3 熱處理溫度對高熵合金粉末之影響 47 4.3.1 晶體結構分析 47 4.3.2 微觀結構及元素分佈分析 51 4.4 高熵合金粉末之相鑑定 54 4.5 高熵合金的熱力學演算 57 4.5.1 固溶體之形成 57 4.5.2 元素擴散行為 59 4.5.3 晶體結構之形成 60 4.6 熱處理對高熵合金粉末機械性質之影響 61 第5章 結論與未來展望 64 5.1 結論 64 5.2 未來展望 65 參考文獻 66

[1] Y. Jien-Wei, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat, 31 (2006) 633-648.
[2] F. Tian, Y. Wang, D. Irving, L. Vitos, M. Gao, J. Yeh, P. Liaw, Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, (2016).
[3] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced engineering materials, 6 (2004) 299-303.
[4] M.-H. Tsai, J.-W. Yeh, High-entropy alloys: a critical review, Materials Research Letters, 2 (2014) 107-123.
[5] G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, J. Guo, Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi) 100-xCox high-entropy alloys, Materials Science and Engineering: A, 710 (2018) 200-205.
[6] S. Ma, Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Materials Science and Engineering: A, 532 (2012) 480-486.
[7] Y. Dong, K. Zhou, Y. Lu, X. Gao, T. Wang, T. Li, Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Materials & Design, 57 (2014) 67-72.
[8] J. Chen, P. Niu, Y. Liu, Y. Lu, X. Wang, Y. Peng, J. Liu, Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy, Materials & Design, 94 (2016) 39-44.
[9] D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy, 16 (2014) 494-525.
[10] Y.-J. An, L. Zhu, S.-H. Jin, J.-J. Lu, X.-Y. Liu, Laser-Ignited Self-Propagating Sintering of AlCrFeNiSi High-Entropy Alloys: An Improved Technique for Preparing High-Entropy Alloys, Metals, 9 (2019) 438.
[11] Z. Zeng, M. Xiang, D. Zhang, J. Shi, W. Wang, X. Tang, W. Tang, Y. Wang, X. Ma, Z. Chen, Mechanical properties of Cantor alloys driven by additional elements: A review, Journal of Materials Research and Technology, 15 (2021) 1920-1934.
[12] A. Erdogan, S.E. Sunbul, K. Icin, K.M. Doleker, Microstructure, wear and oxidation behavior of AlCrFeNiX (X= Cu, Si, Co) high entropy alloys produced by powder metallurgy, Vacuum, 187 (2021) 110143.
[13] X. Liu, W. Lei, L. Ma, J. Liu, J. Liu, J. Cui, On the microstructures, phase assemblages and properties of Al0. 5CoCrCuFeNiSix high-entropy alloys, Journal of Alloys and Compounds, 630 (2015) 151-157.
[14] B. Jin, N. Zhang, F. Wang, Y. Zhang, D. Li, Phase evolution and wear mechanism of AlCoCrFeNiSix high-entropy alloys produced by arc melting, Materials Research Express, 5 (2018) 096505.
[15] C.-C. Yang, J.L.H. Chau, C.-J. Weng, C.-S. Chen, Y.-H. Chou, Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process, Materials Chemistry and Physics, 202 (2017) 151-158.
[16] J. Zhu, H. Fu, H. Zhang, A. Wang, H. Li, Z. Hu, Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys, Materials Science and Engineering: A, 527 (2010) 7210-7214.
[17] D. Lu, Can electric cars kick the cobalt habit?, New scientist, (2020) 16.
[18] Z. Zhongming, L. Linong, Y. Xiaona, Z. Wangqiang, L. Wei, Cobalt demand for 5G to challenge electric vehicles, (2020).
[19] P. Alves Dias, D. Blagoeva, C. Pavel, N. Arvanitidis, Cobalt: demand-supply balances in the transition to electric mobility, Publications Office of the European Union, 10 (2018) 97710.
[20] S.S. Afolabi, M.O. Zakariyah, M.H. Abedi, W. Shafik, A survey on cobalt metallurgical processes and its application, Journal of the Indian Chemical Society, 98 (2021) 100179.
[21] J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Cobalt-base high-temperature alloys, Science, 312 (2006) 90-91.
[22] T. Yang, Y. Zhao, W. Liu, J. Kai, C. Liu, L12-strengthened high-entropy alloys for advanced structural applications, Journal of Materials Research, 33 (2018) 2983-2997.
[23] J. Liu, X. Wang, A.P. Singh, H. Xu, F. Kong, F. Yang, The Evolution of Intermetallic Compounds in High-Entropy Alloys: From the Secondary Phase to the Main Phase, Metals, 11 (2021) 2054.
[24] M. Srikanth, A.R. Annamalai, A. Muthuchamy, C.-P. Jen, A Review of the Latest Developments in the Field of Refractory High-Entropy Alloys, Crystals, 11 (2021) 612.
[25] A. Fu, W. Guo, B. Liu, Y. Cao, L. Xu, Q. Fang, H. Yang, Y. Liu, A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties, Journal of Alloys and Compounds, 815 (2020) 152466.
[26] P.D. Jablonski, J.J. Licavoli, M.C. Gao, J.A. Hawk, Manufacturing of high entropy alloys, Jom, 67 (2015) 2278-2287.
[27] M. Löbel, T. Lindner, C. Kohrt, T. Lampke, Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, pp. 012015.
[28] Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, H.R. Ammar, Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: A review, Metals and Materials International, 26 (2020) 1099-1133.
[29] S. Chen, Y. Tong, P.K. Liaw, Additive manufacturing of high-entropy alloys: a review, Entropy, 20 (2018) 937.
[30] N. Eißmann, B. Klöden, T. Weißgärber, B. Kieback, High-entropy alloy CoCrFeMnNi produced by powder metallurgy, Powder Metallurgy, 60 (2017) 184-197.
[31] A. Meghwal, A. Anupam, B. Murty, C.C. Berndt, R.S. Kottada, A.S.M. Ang, Thermal spray high-entropy alloy coatings: a review, Journal of Thermal Spray Technology, 29 (2020) 857-893.
[32] Y. Ye, Q. Wang, J. Lu, C. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Materials Today, 19 (2016) 349-362.
[33] C.S. Smith, Four outstanding researches in metallurgical history, (1963).
[34] B. Cantor, Multicomponent and high entropy alloys, Entropy, 16 (2014) 4749-4768.
[35] D.R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, CRC press, 2017.
[36] R.A. Swalin, J. Arents, Thermodynamics of solids, Journal of The Electrochemical Society, 109 (1962) 308C.
[37] J.-W. Yeh, Alloy design strategies and future trends in high-entropy alloys, Jom, 65 (2013) 1759-1771.
[38] 葉均蔚, 高熵合金的發展, 華岡工程學報, (2011) 1-18.
[39] B.S. Murty, J.-W. Yeh, S. Ranganathan, P. Bhattacharjee, High-entropy alloys, Elsevier, 2019.
[40] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in materials science, 61 (2014) 1-93.
[41] J.-W. Yeh, Physical metallurgy of high-entropy alloys, Jom, 67 (2015) 2254-2261.
[42] E. Pickering, N. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, International Materials Reviews, 61 (2016) 183-202.
[43] B. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, Recent progress in high entropy alloy research, Jom, 69 (2017) 2024-2031.
[44] K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys, Acta Materialia, 61 (2013) 4887-4897.
[45] V.E.e. Gromov, S.V.e. Konovalov, Y.F. Ivanov, K. Osintsev, Structure and properties of high-entropy alloys, Springer, 2021.
[46] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Advanced engineering materials, 10 (2008) 534-538.
[47] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics, 132 (2012) 233-238.
[48] S. Guo, C. Ng, J. Lu, C. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, Journal of applied physics, 109 (2011) 103505.
[49] R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y. Chiu, H. Ding, J. Guo, H. Fu, Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility, Acta Materialia, 144 (2018) 129-137.
[50] M.-H. Tsai, K.-Y. Tsai, C.-W. Tsai, C. Lee, C.-C. Juan, J.-W. Yeh, Criterion for sigma phase formation in Cr-and V-containing high-entropy alloys, Materials Research Letters, 1 (2013) 207-212.
[51] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375 (2004) 213-218.
[52] J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, Z. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Materialia, 62 (2014) 105-113.
[53] T.-T. Shun, L.-Y. Chang, M.-H. Shiu, Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys, Materials Science and Engineering: A, 556 (2012) 170-174.
[54] B. Ren, Z. Liu, B. Cai, M. Wang, L. Shi, Aging behavior of a CuCr2Fe2NiMn high-entropy alloy, Materials & Design, 33 (2012) 121-126.
[55] T.-T. Shun, L.-Y. Chang, M.-H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys, Materials Characterization, 70 (2012) 63-67.
[56] Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature, 574 (2019) 223-227.
[57] L. Hou, J. Hui, Y. Yao, J. Chen, J. Liu, Effects of Boron Content on microstructure and mechanical properties of AlFeCoNiBx High Entropy Alloy Prepared by vacuum arc melting, Vacuum, 164 (2019) 212-218.
[58] C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, P.K. Liaw, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Materials & Design, 109 (2016) 425-433.
[59] S. Ma, P. Liaw, M. Gao, J. Qiao, Z. Wang, Y. Zhang, Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer, Journal of Alloys and Compounds, 604 (2014) 331-339.
[60] W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26 (2012) 44-51.
[61] R. Li, P. Liaw, Y. Zhang, Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides, Materials Science and Engineering: A, 707 (2017) 668-673.
[62] P. Ding, A. Mao, X. Zhang, X. Jin, B. Wang, M. Liu, X. Gu, Preparation, characterization and properties of multicomponent AlCoCrFeNi2. 1 powder by gas atomization method, Journal of Alloys and Compounds, 721 (2017) 609-614.
[63] C. Li, J. Li, M. Zhao, Q. Jiang, Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys, Journal of Alloys and Compounds, 504 (2010) S515-S518.
[64] T.R. Bieler, Advances in Material Studies for SRF, SRF2009, Berlin, Germany, SRF2009 WEB Proceedings, paper TUOAAU03, (2009) 102-108.
[65] M.P. Agustianingrum, U. Lee, N. Park, High-temperature oxidation behaviour of CoCrNi medium-entropy alloy, Corrosion Science, 173 (2020) 108755.
[66] J. Lu, L. Li, H. Zhang, Y. Chen, L. Luo, X. Zhao, F. Guo, P. Xiao, Oxidation behavior of gas-atomized AlCoCrFeNi high-entropy alloy powder at 900-1100° C, Corrosion Science, 181 (2021) 109257.
[67] C. Si, X. Tang, X. Zhang, J. Wang, W. Wu, Characteristics of 7055Al alloy powders manufactured by gas-solid two-phase atomization: A comparison with gas atomization process, Materials & Design, 118 (2017) 66-74.
[68] Y. Wu, P.K. Liaw, Y. Zhang, Preparation of bulk TiZrNbMoV and NbTiAlTaV high-entropy alloys by powder sintering, Metals, 11 (2021) 1748.
[69] S. Sun, Y. Tian, H. Lin, X. Dong, Y. Wang, Z. Zhang, Z. Zhang, Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure, Materials & Design, 133 (2017) 122-127.
[70] K. Zhou, J. Li, L. Wang, H. Yang, Z. Wang, J. Wang, Direct laser deposited bulk CoCrFeNiNbx high entropy alloys, Intermetallics, 114 (2019) 106592.
[71] C.E. Lyman, D.E. Newbury, J. Goldstein, A.D. Romig Jr, J. Armstrong, P. Echlin, D.B. Williams, D.C. Joy, C. Fiori, E. Lifshin, Scanning electron microscopy, X-ray microanalysis, and analytical electron microscopy: a laboratory workbook, Springer Science & Business Media, 1990.
[72] M.J. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G. Hart, S. Curtarolo, The AFLOW library of crystallographic prototypes: part 1, Computational Materials Science, 136 (2017) S1-S828.

QR CODE