簡易檢索 / 詳目顯示

研究生: 曾裕勝
Yu-Sheng Tseng
論文名稱: 靜息態功能性磁振造影: 預設模式網路海馬迴信號及網路模版建構之研究
Resting-State fMRI: Signal of the parahippocampal gyrus in the default-mode network and constructing network templates
指導教授: 黃騰毅
Teng-Yi Huang
口試委員: 劉益瑞
Yi-Jui Liu
林益如
Yi-Ru Lin
蔡尚岳
Shang-Yueh Tsai
王福年
Fu-Nien Wang
莊子肇
Tzu-Chao Chuang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 33
中文關鍵詞: 磁振造影梯度回訊像最佳化關鍵字磁振造影梯度回訊像最佳化信號損失磁化率預設模式網路連結度
外文關鍵詞: GE-EPI, signal loss, DMN
相關次數: 點閱:177下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

核磁共振的梯度回訊成像序列,是藉由腦區域中血液的帶氧程度來呈現血氧程度對比,可用來觀察靜止息大腦中神經的自發性活動與並分區為靜止息網路。靜息態網路在近幾年由許多研究提出其結構上與功能上的特徵,大致可分為體感運動網路、聽覺網路、視覺網路、認知網路、額葉顳葉網路、扣帶回腮骨網路、腹側專注網路、杏仁核網路、額葉顳葉網路與預設模式網路等,其中以預設模式網路最具有重現性。本論文主要探討的三個相關研究主題 (1) 靜息態網路的自動計算系統 (2)海馬迴皮質的信號喪失 (3) 靜息態網路模版。我們建立了基於雲端計算的全自動的靜息態網路分析平台,它替本團隊的相關研究提供了一個標準化的計算過程。另外,近幾年有臨床研究提出該網路中後側扣帶回與海馬迴皮質的連結若發生異常,可能與阿茲罕默症產生的病變有關。然而,預設模式網路中的海馬迴反應區域由3T核磁共振收取時較不穩定。海馬迴皮質區的信號強度因為磁化率的不均勻造成信號損失的現象。在本研究中,我們將梯度回訊影像以三種容易實行的切面方向來討論收取到之信號強度與預設模式網路的連結度關係。最後,我們提出了一個分析流程,來自動建構一個包含十三個靜息態網路的腦網路模版。


Previous resting-state functional MRI (fMRI) studies have demonstrated that low-frequency fluctuations of spontaneous neuronal activity in the human brain can be detected using gradient-echo echo-planar imaging (GE-EPI) based on blood oxygenation level-dependent (BOLD) contrast. Several resting-state networks have been identified with their structure and functional features, including somatomotor, auditory, visual, cognitive, frontoparietal, cinguloopercular, dorsal attention, amygdala, and frontotemporal networks as well as the default-mode network (DMN). This thesis is consisted of three major parts: (1) computation system for resting-state fMRI (2) signal loss of the parahippocampal cortex (PHC) (3) constructing a template for resting-state fMRI studies. We built a fully-automatic cloud-computing platform, named MARS, to perform resting-state fMRI analysis. The computation system provides a standardized analysis for the resting-state fMRI data investigated in our group. Among the reported resting-state networks, the DMN is highly reproducible. The results of clinical DMN studies have indicated that disrupted connectivity of posterior cingulate cortex to PHC could account for neuronal disorders such as Alzheimer’s disease (AD). However, PHC activation in the DMN was nearly absent when GE-EPI images were acquired using a 3.0 T MRI scanner. In this thesis, we investigated the signal intensities of GE-EPI images and FC of the DMN by using 3 conventional slice orientations. Finally, we proposed a work-flow to construct a template consisted of 13 networks for resting-state fMRI studies.

I 中文摘要 II Abstract III 致謝 IV Contents V Abbreviations VI List of figures and tables Chapter 1. Introduction………………………………………………….………1 1.1 Automatic Resting-State Image processing……………………..…1 1.2 Reducing signal loss with imaging encoding…………………….…1 1.3 Resting-State Networks and resting-state template………….……2 Chapter 2. Automatic Analysis of the Resting-State Networks…………..……3 2.1 The cloud-computing system: Mapping resting-state network (MARS)MRI data acquisition……………………………..………..3 2.2 Image Data Preprocessing…………………………………….…….4 Chapter 3. The signal loss in the parahippocampal gyrus and the default-mode network in 3.0 T MRI…………………………….10 3.1 MRI data acquisition……………………………………………....10 3.2 Analysis of AAL regional signal intensity: Anisotropic versus isotropic………………………………………………………….….12 3.3 Measurement of the field gradients in the PHC.............................13 3.4 Identifying the DMN nodes and regions Field gradients: AAL-based analysis……………………………………………….13 3.5 Statistical analysis of functional connectivity………………..…...14 3.6 Results………………………………………………………….…...15 Chapter 4. Reconstructing a rs-fMRI template: A preliminary study…....…23 4.1 RSNs based on 90 AAL regions………………………………..…..23 4.2 Clustering the RSNs…………………………………………..……23 4.3 Preliminary Results…………………………………………..….…24 Chapter 5. Discussion and conclusion……………………………………..…..28 5.1 Reducing signal loss of the parahippocampal gyrus…………...28 5.2 Constructing templates for resting-state networks…………….32 5.3 Conclusions………………………………………………...……….32 Reference…………………………………………………………………………....33

1. Beckmann, C.F., et al., Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci, 2005. 360(1457): p. 1001-13.
2. Vaidya, C.J. and E.M. Gordon, Phenotypic variability in resting-state functional connectivity: current status. Brain Connect, 2013. 3(2): p. 99-120.
3. Biswal, B., et al., Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995. 34(4): p. 537-41.
4. Fox, M.D., et al., The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A, 2005. 102(27): p. 9673-8.
5. Raichle, M.E., et al., A default mode of brain function. Proc Natl Acad Sci U S A, 2001. 98(2): p. 676-82.
6. Greicius, M.D., et al., Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A, 2003. 100(1): p. 253-8.
7. Buckner, R.L., J.R. Andrews-Hanna, and D.L. Schacter, The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci, 2008. 1124: p. 1-38.
8. Greicius, M.D., et al., Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A, 2004. 101(13): p. 4637-42.
9. Zang, Y.F., et al., Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev, 2007. 29(2): p. 83-91.
10. Halchenko, Y.O. and M. Hanke, Open is Not Enough. Let's Take the Next Step: An Integrated, Community-Driven Computing Platform for Neuroscience. Front Neuroinform, 2012. 6: p. 22.
11. Ashburner, J. and K.J. Friston, Voxel-based morphometry--the methods. Neuroimage, 2000. 11(6 Pt 1): p. 805-21.
12. Ashburner, J. and K.J. Friston, Why voxel-based morphometry should be used. Neuroimage, 2001. 14(6): p. 1238-43.
13. Fonov, V., et al., Unbiased Average Age-Appropriate Atlases for Pediatric Studies. NeuroImage, 2011. 54(1): p. 313-327.
14. Hallquist, M.N., K. Hwang, and B. Luna, The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage, 2013. 82C: p. 208-225.
15. Raichle, M.E., The restless brain. Brain Connect, 2011. 1(1): p. 3-12.
16. Stenger, V.A., F.E. Boada, and D.C. Noll, Multishot 3D slice-select tailored RF pulses for MRI. Magn Reson Med, 2002. 48(1): p. 157-65.
17. Gorno-Tempini, M.L., et al., Echo time dependence of BOLD contrast and susceptibility artifacts. Neuroimage, 2002. 15(1): p. 136-42.
18. Glover, G.H., 3D z-shim method for reduction of susceptibility effects in BOLD fMRI. Magn Reson Med, 1999. 42(2): p. 290-9.
19. Tang, Y.W. and T.Y. Huang, Real-time feedback optimization of z-shim gradient for automatic compensation of susceptibility-induced signal loss in EPI. Neuroimage, 2011. 55(4): p. 1587-92.
20. Deichmann, R., et al., Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage, 2003. 19(2): p. 430-441.
21. Chen, N.K., et al., Selection of voxel size and slice orientation for fMRI in the presence of susceptibility field gradients: application to imaging of the amygdala. Neuroimage, 2003. 19(3): p. 817-25.
22. Weiskopf, N., et al., Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage, 2006. 33(2): p. 493-504.
23. Tzourio-Mazoyer, N., et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 2002. 15(1): p. 273-89.
24. Fair, D.A., et al., The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A, 2008. 105(10): p. 4028-32.
25. Krasnow, B., et al., Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing. NeuroImage, 2003. 18(4): p. 813-826.
26. Chen, N.-K., et al., Selection of voxel size and slice orientation for fMRI in the presence of susceptibility field gradients: application to imaging of the amygdala. NeuroImage, 2003. 19(3): p. 817-825.
27. Damoiseaux, J.S., et al., Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A, 2006. 103(37): p. 13848-53.
28. Seeley, W.W., et al., Neurodegenerative diseases target large-scale human brain networks. Neuron, 2009. 62(1): p. 42-52.
29. Smith, S.M., et al., Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A, 2009. 106(31): p. 13040-5.
30. Sang, L., et al., Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage, 2012. 61(4): p. 1213-25.

QR CODE