簡易檢索 / 詳目顯示

研究生: 吳越勇
NGO - VIET DUNG
論文名稱: 多振態側推分析之建築物耐震評估
Seismic Evaluation of Buildings by Multimode Pushover Analysis Method
指導教授: 鄭蘩
Van Jeng
口試委員: 黃慶東
cthuang
陳瑞華
rhcherng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 128
中文關鍵詞: 建築物穩定評估模態分析側推分析建築物耐震分析
外文關鍵詞: building evaluation
相關次數: 點閱:144下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    耐震評估中常見的側推分析法以施加第一模態之側力來評估建築物。分別以三種不同高度之建築物作為分析對象,並以多振態側推分析與非線性歷時分析之結果做比較,研究結果發現上述之二種分析方法所得到的結果接近,但是對於低矮之五層樓鋼筋混凝土建築物,其第一模態即主宰其反應,而對於中高樓層結構物,最少應採用兩個模態來分析。三種建築物中,中低層結構物以多振態側推分析來處理較為適當。


    ABSTRACT
    Pushover analysis procedure (PA) was a very convenient tool for evaluating of seismic performance of buildings by applying the lateral for patterned as the inertia force of the first mode. The procedure has been extended to consider the pushover for multiple modes. The peak inelastic response of a 10-storey, 20-storey steel building (SB) and 5-storey reinforced concrete building (RCB) determined by the approximate MPA procedure is compared with rigorous non-linear response history analysis, it is demonstrated that MPA estimates the response of buildings responding well into the inelastic range to a acceptable accuracy. Moreover, it shows that for the low building (5-storey RCB), the first mode results is dominate while for the higher building (10-20 SB) we need at least 2 modes to converge the results to a certain acceptable errors compared with the results obtained from the RHA procedure. Finally, when comparing the errors of 3 kinds of building: low building, medium building, and high building, that the errors in the low-medium building are quite smaller than the others. Thus, the MPA procedure is a better application for low and medium buildings’ evaluation and design.
    KEY WORDS: building evaluation and retrofit; modal analysis; pushover; seismic demands.

    TABLE OF CONTENTS Acknowledgement…………………………………………………………………...... i Abstract………………………………………………………………………………... ii Table of contents………………………………………………………………………. iii List of figures………………………………………………………………………….. iv List of tables…………………………………………………………………………… v List of Notations………………………………………………………………………. vi CHAPTER I: Introduction………………………………………………………………. 1 1.1. Overview …………………………………………………………………………. 1 1.2. Objectives of the Study…………………………………………………………… 2 1.3. Scope and Methodology…………………………………………………………... 2 1.4. Organization of the Study………………………………………………………… 3 CHAPTER II: Introduction to Multimode Pushover Analysis Method ………………… 4 2.1. Background……………………………………………………………………….. 4 2.2. Pushover Analysis Method……………………………………………………….. 5 2.2.1. Modal response history analysis…………………………………………… 5 2.2.2. Modal response spectrum analysis…………………………………………. 8 2.2.3. Modal pushover analysis…………………………………………………… 8 2.3. Multimode Pushover Analysis Method…………………………………………… 8 2.4. Supported Programs………………………………………………………………. 9 2.4.1. SAP2000 Program………………………………………………………….. 9 2.4.2. Bispec Program…………………………………………………………….. 9 CHAPTER III: Multimode Pushover Analysis Procedure………………………………. 12 3.1. SAP2000 Program – Analysis Procedure…………………………………………. 12 3.1.1. Model the Buildings and Define the Analyses……………………………... 12 3.1.1.1. 5-Storey building…………………………………………………... 12 3.1.1.2. 10-Storey building…………………………………………………. 13 3.1.1.1. 20-Storey building…………………………………………………. 13 3.1.2. Bilinear the Pushover Curves and convert to SDOF system……………….. 14 3.1.2.1. 5-Storey building…………………………………………………... 14 3.1.2.1.1. Mode1…………………………………………………... 14 3.1.2.1.2. Mode2…………………………………………………... 15 3.1.2.1.3. Mode3…………………………………………………... 15 3.1.2.1.4. Mode4…………………………………………………... 15 3.1.2.1.5. Mode5…………………………………………………... 16 3.1.2.2. 10-Storey building………………………………………………… 16 3.1.2.2.1. Mode1………………………………………………….. 16 3.1.2.2.2. Mode2………………………………………………….. 17 3.1.2.2.3. Mode3………………………………………………….. 17 3.1.2.2.4. Mode4………………………………………………….. 18 3.1.2.2.5. Mode5………………………………………………….. 18 3.1.2.3. 20-Storey building………………………………………………… 19 3.1.2.3.1. Mode1………………………………………………….. 19 3.1.2.3.2. Mode2………………………………………………….. 19 3.1.2.3.3. Mode3………………………………………………….. 19 3.1.2.3.4. Mode4………………………………………………….. 20 3.1.2.3.5. Mode5………………………………………………….. 20 3.2. Bispec Program – Analysis Procedure…………………………………………… 21 3.2.1. Model the Buildings and Define the Analyses……………………………. 21 3.2.1.1. 5-Storey building…………………………………………………. 21 3.2.1.2. 10-Storey building………………………………………………… 21 3.2.1.1. 20-Storey building………………………………………………… 21 3.2.2. Mark the Earthquake points onto the Bilinear Modal Pushover Curves…… 21 CHAPTER IV: Design building of 5, 10, and 20-Storey according to the Taiwan Building Code…………………………………………………………………………. 61 4.1. 5 - Storey building………………………………………………………………… 61 4.1.1. Multi-Mode Pushover Analysis - results …………………………………. 61 4.1.2. Time History Analysis - results …………………………………………... 63 4.1.3. Comparision……………………………………………………………….. 63 4.2. 10 - Storey building………………………………………………………………. 64 4.2.1. Multi-Mode Pushover Analysis - results …………………………………. 64 4.2.2. Time History Analysis - results …………………………………………... 64 4.2.3. Comparision……………………………………………………………….. 65 4.3. 20 - Storey building………………………………………………………………. 66 4.3.1. Multi-Mode Pushover Analysis - results …………………………………. 66 4.3.2. Time History Analysis - results …………………………………………... 66 4.3.3. Comparision………………………………………………………………... 66 4.4. Comparison among 5, 10, 20 - Storey building - Errors between two methods … 67 CHAPTER V: Recommendations and Conclusion……………………………………… 81 5.1. Recommendations………………………………………………………………… 81 5.3. Results and Conclusions..…….…………………………………………………... 81 References…………………………………………………………………………….. 83 LIST OF FIGURES Figure 2.1. ATC40 and FEMA356. …………………………………………………. 11 Figure 2.2. Conceptual explanation of modal RHA of elastic MDF systems. ……… 11 Figure 3.1. Side View of 5-Storey building in X-Z Plane…………………………… 22 Figure 3.2. Plan View of 5-Storey building in X-Y Plane…………………………… 23 Figure 3.3. Side View of 5-Storey building in Y-Z Plane……………………………. 23 Figure 3.4. Side View of 10-Storey building in X-Z Plane…………………………... 24 Figure 3.5. Plan View of 10-Storey building in X-Y Plane………………………….. 24 Figure 3.6. Side View of 10-Storey building in Y-Z Plane…………………………... 25 Figure 3.7. Side View of 20-Storey building in X-Z and Y-Z Plan………………….. 26 Figure 3.8. Plan View of 20-Storey building in X-Y Plane………………………….. 27 Figure 3.9. Idealized Pushover curve M1 (5storey-building)…..…………………….. 27 Figure 3.10. Fsn/Ln - Dn Relationship - M1(5storey-building)…...…………………. 28 Figure 3.11. Idealized Pushover curve M2 (5storey-building)…….………………… 28 Figure 3.12. Fsn/Ln - Dn Relationship - M2(5storey-building)…..…………………… 28 Figure 3.13. Idealized Pushover curve M3(5storey-building)……..………………… 29 Figure 3.14. Fsn/Ln - Dn Relationship - M3(5storey-building)……………………… 29 Figure 3.15. Idealized Pushover curve M4(5storey-building)……...………………… 29 Figure 3.16. Fsn/Ln - Dn Relationship - M4(5storey-building)……...………………. 30 Figure 3.17. Idealized Pushover curve M5(5storey-building)……….………………. 30 Figure 3.18. Fsn/Ln - Dn Relationship - M5(5storey-building)……..………………. 30 Figure 3.19 Idealized Pushover curve M1(10storey-building)………………………. 31 Figure 3.20. Fsn/Ln - Dn Relationship - M1(10storey-building)……………………. 31 Figure 3.21. Idealized Pushover curve M2(10storey-building)………………………. 31 Figure 3.22. Fsn/Ln - Dn Relationship - M2(10storey-building)…….………………. 32 Figure 3.23. Idealized Pushover curve M3(10storey-building)………………………. 32 Figure 3.24. Fsn/Ln - Dn Relationship - M3(10storey-building)…….………………. 32 Figure 3.25. Idealized Pushover curve M4(10storey-building)………………………. 33 Figure 3.26. Fsn/Ln - Dn Relationship - M4(10storey-building)…………..………… 33 Figure 3.27. Idealized Pushover curve M5(10storey-building)………………………. 33 Figure 3.28. Fsn/Ln - Dn Relationship - M5(10storey-building)…….………………. 34 Figure 3.29 Idealized Pushover curve M1(20storey-building)………………………. 34 Figure 3.30. Fsn/Ln - Dn Relationship - M1(20storey-building)……………………. 34 Figure 3.31. Idealized Pushover curve M2(20storey-building)………………………. 35 Figure 3.32. Fsn/Ln - Dn Relationship - M2(20storey-building)…….………………. 35 Figure 3.33. Idealized Pushover curve M3(20storey-building)………………………. 35 Figure 3.34. Fsn/Ln - Dn Relationship - M3(20storey-building)…….………………. 36 Figure 3.35. Idealized Pushover curve M4(20storey-building)………………………. 36 Figure 3.36. Fsn/Ln - Dn Relationship - M4(20storey-building)…………..………… 36 Figure 3.37. Idealized Pushover curve M5(20storey-building)………………………. 37 Figure 3.38. Fsn/Ln - Dn Relationship - M5(20storey-building)…….………………. 37 Figure 3.39. Define Earthquake 1EL-Centro(5-Storey building)…….………………. 37 Figure 3.40. 1xEL-Centro Earthquake Data …………………...…….………………. 38 Figure 3.41. Define equivalent SDOF of (5-Storey building) mode1…………………. 38 Figure 3.42. Define equivalent SDOF of (5-Storey building) mode2…………………. 39 Figure 3.43. Define equivalent SDOF of (5-Storey building) mode3…………………. 39 Figure 3.44. Define equivalent SDOF of (5-Storey building) mode4…………………. 40 Figure 3.45. Define equivalent SDOF of (5-Storey building) mode5…………………. 40 Figure 3.46. Define equivalent SDOF of (10-Storey building) mode1………………. 41 Figure 3.47. Define equivalent SDOF of (10-Storey building) mode2………………. 41 Figure 3.48. Define equivalent SDOF of (10-Storey building) mode3………………. 42 Figure 3.49. Define equivalent SDOF of (10-Storey building) mode4………………. 42 Figure 3.50. Define equivalent SDOF of (10-Storey building) mode5………………. 43 Figure 3.51. Define equivalent SDOF of (20-Storey building) mode1………………. 43 Figure 3.52. Define equivalent SDOF of (20-Storey building) mode2………………. 44 Figure 3.53. Define equivalent SDOF of (20-Storey building) mode3………………. 44 Figure 3.54. Define equivalent SDOF of (20-Storey building) mode4………………. 45 Figure 3.55. Define equivalent SDOF of (20-Storey building) mode5………………. 45 Figure 3.56 Time History Analysis results - BISPEC (5storey building-mode1)….…. 93 Figure 3.57 Time History Analysis results - BISPEC (5storey building-mode2)….…. 93 Figure 3.58 Time History Analysis results - BISPEC (5storey building-mode3)….…. 94 Figure 3.59 Time History Analysis results - BISPEC (5storey building-mode4)….…. 94 Figure 3.60 Time History Analysis results - BISPEC (5storey building-mode5)….…. 95 Figure 3.61 Time History Analysis results - BISPEC (10storey building-mode1)…… 95 Figure 3.62 Time History Analysis results - BISPEC (10storey building-mode2)….... 96 Figure 3.63 Time History Analysis results - BISPEC (10storey building-mode3)…... 96 Figure 3.64 Time History Analysis results - BISPEC (10storey building-mode4)….... 97 Figure 3.65 Time History Analysis results - BISPEC (10Storey building-mode5)…... 97 Figure 3.66 Time History Analysis results - BISPEC (10storey building-mode1)…… 98 Figure 3.67 Time History Analysis results - BISPEC (10storey building-mode2)….…. 98 Figure 3.68 Time History Analysis results - BISPEC (10storey building-mode3)…..... 99 Figure 3.69 Time History Analysis results - BISPEC (10storey building-mode4)…….. 99 Figure 3.70 Time History Analysis results - BISPEC (10Storey building-mode5)…... 100 Figure 4.1. Define Load Application Control for Nonlinear Static Analysis ……..…... 68 Figure 4.2. Floor Displacement, Storey Drift(5storey-building)(0.25EL-Centro) (MPA)………………………………………………………………………...………... 69 Figure 4.3. Define Time History Analysis (1EL-Centro)………………….....………... 69 Figure 4.4. Floor Displacement, Storey Drift(5storey-building)(0.25EL-Centro)(RHA)…………………………………………………………………...……... 70 Figure 4.5. Floor Displacement, Storey Drift(10storey-building)(0.25EL-Centro) (MPA)………………………………………………………………………...………... 71 Figure 4.6. Floor Displacement, Storey Drift(10storey-building)(0.25EL-Centro)(RHA)…………………………………………………………………...……... 72 Figure 4.7. Floor Displacement, Storey Drift(10storey-building)(0.25EL-Centro) (MPA)………………………………………………………………………...………... 73 Figure 4.8. Floor Displacement, Storey Drift(10storey-building)(0.25EL-Centro)(RHA)…………………………………………………………………...……... 74 Figure 4.9 Floor Displacement: 0.25, 0.5, 0.75, 0.85EL-Centro of 1 to 5 modes and Time history analysis. (5storey building)…………………………...………………..... 101 Figure 4.10 Floor Displacement: 1.0, 1.5, 2.0, 3.0EL-Centro of 1 to 5 modes and Time history analysis. (5storey building)…………………………...………………..... 102 Figure 4.11 Floor Displacement: 4.0, 5.0EL-Centro of 1 to 5 modes and Time history analysis. (5storey building)…………….…………………………...………………..... 103 Figure 4.12 Storey drift: 0.25, 0.5EL-Centro of 1 to 5 modes and Time history analysis. (5storey building)…………….…………………………...………………..... 103 Figure 4.13 Storey drift: 0.75, 0.85, 1.0, 1.5EL-Centro of 1 to 5 modes and Time history analysis. (5storey building)…….…………………………...………………..... 104 Figure 4.14 Storey drift: 2.0, 3.0, 4.0, 5.0EL-Centro of 1 to 5 modes and Time history analysis. (5storey building)…………….…………………………...………………..... 105 Figure 4.15 Mean Errors between MPA-RHA (5storey building).................………..... 106 Figure 4.16 Floor Displacement: 0.25, 0.5, 0.75, 0.85EL-Centro of 1 to 5 modes and Time history analysis. (10storey building)………………………...………………..... 108 Figure 4.17 Floor Displacement: 1.0, 1.5, 2.0, 3.0EL-Centro of 1 to 5 modes and Time history analysis. (10storey building)………………………...………………..... 109 Figure 4.18 Floor Displacement: 4.0, 5.0EL-Centro of 1 to 5 modes and Time history analysis. (10storey building)…………….………………………...………………..... 110 Figure 4.19 Storey drift: 0.25, 0.5EL-Centro of 1 to 5 modes and Time history analysis. (10storey building)……………………………………...………………..... 110 Figure 4.20 Storey drift: 0.75, 0.85, 1.0, 1.5EL-Centro of 1 to 5 modes and Time history analysis. (10storey building)…….………………………...………………..... 111 Figure 4.21 Storey drift: 2.0, 3.0, 4.0, 5.0EL-Centro of 1 to 5 modes and Time history analysis. (10storey building)………….…………………………...………………..... 112 Figure 4.22 Mean Errors between MPA-RHA (10Storey building).................……..... 113 Figure 4.23 Floor Displacement: 0.25, 0.5EL-Centro of 1 to 5 modes and Time history analysis. (20storey building)…………….………………...………………..... 115 Figure 4.24 Floor Displacement: 0.75, 0.85EL-Centro of 1 to 5 modes and Time history analysis. (20storey building)……………………………....………………..... 116 Figure 4.25 Floor Displacement: 1.0, 1.5EL-Centro of 1 to 5 modes and Time history analysis. (20storey building)…………….………………………...………………..... 117 Figure 4.26 Floor Displacement: 2.0, 3.0EL-Centro of 1 to 5 modes and Time history analysis. (20storey building)…………….…………………………………………..... 118 Figure 4.27 Floor Displacement: 4.0, 5.0EL-Centro of 1 to 5 modes and Time history analysis. (20storey building)…………….…………………………………………..... 119 Figure 4.29 Storey drift: 0.25, 0.5EL-Centro of 1 to 5 modes and Time history analysis. (20storey building)…………….………………...………………….……..... 120 Figure 4.29 Storey drift: 0.75, 0.85EL-Centro of 1 to 5 modes and Time history analysis. (20storey building)……………………………....………………….……..... 121 Figure 4.30 Storey drift: 1.0, 1.5EL-Centro of 1 to 5 modes and Time history analysis. (20storey building)…………….………………………...………………..... 122 Figure 4.31 Storey drift: 2.0, 3.0EL-Centro of 1 to 5 modes and Time history analysis. (20storey building)…………….…………………………………………..... 123 Figure 4.32 Storey drift: 4.0, 5.0EL-Centro of 1 to 5 modes and Time history analysis. (20storey building)…………….…………………………………………..... 124 Figure 4.34 Floor-Displacement, Storey Drift 1-5 modes (0.01EL-C, 5storey building)……………………………………….................................................……..... 127 LIST OF TABLES Table 3.1. Steel Areas in Columns and the Steel bars (cm2) ( 5-Storey building) …… 46 Table 3.2. Steel Areas in Beams - Top Steel (cm2) ( 5-Storey building) …………….. 46 Table 3.3. Steel Areas in Beams - Bottom Steel (cm2) ( 5-Storey building) ………… 46 Table 3.4. Floor Mass and Distributed Mass case( 5-Storey building) ……………… 47 Table 3.5. Frame Hinge Interaction Surface(5-Storey building) ……………………. 47 Table 3.6. Frame hinge Property Data for Plastic Hinges in Beams(5-Storey building). 48 Table 3.7. Frame hinge Property Data for Plastic Hinges in Columns(5-Storey building) ……………………………………………………………………………... 49 Table 3.8. Moment Rotation Data for Plastic Hinge in Columns(5-Storey building)…. 49 Table 3.9. Sections and Types of Beams and Columns(10-Storey building)………… 50 Table 3.10. Floor Mass and Distributed Mass case(10-Storey building)……………. 50 Table 3.11. Frame Hinge Interaction Surface (10-Storey building)…………………. 51 Table 3.12. Frame hinge Property Data for Plastic Hinges in Beams(10-Storey building) ……………………………………………………………………………... 51 Table 3.13 Frame hinge Property Data for Plastic Hinges in Columns(10-Storey building) …………………………………………………………………………….. 52 Table 3.14 Moment Rotation Data for Plastic Hinge in Columns(10-Storey building).. 52 Table 3.15 Sections and Types of Beam and Column(20-Storey building)……………. 53 Table 3.16 Floor Mass and Distributed Mass case(20-Storey building) ……………… 54 Table 3.17 Frame Hinge Interaction Surface(20-Storey building) ……………………. 54 Table 3.18 Frame hinge Property Data for Plastic Hinges in Beams(20-Storey building)……………………………………………………………………………….. 55 Table 3.19 Frame hinge Property Data for Plastic Hinges in Columns(20-Storey building) ……………………………………………………………………………... 56 Table 3.20 Moment Rotation Data for Plastic Hinge in Columns(20-Storey building) 56 Table 3.21 Mode shapes (5-Storey building) ………………………………………... 57 Table 3.22 Mass matrix(5-Storey building) …………………………………………. 57 Table 3.23 Mode shapes (10-Storey building) ………………………………………. 57 Table 3.24 Mass matrix(10-Storey building) ………………………………………... 57 Table 3.25 Mode shapes (20-Storey building) ………………………………………. 58 Table 3.26 Mass matrix(20-Storey building) ………………………………………... 58 Table 3.27 Time History Analysis results - BISPEC (5storey building-mode1)……... 85 Table 3.28 Time History Analysis results - BISPEC (5storey building-mode2)……... 85 Table 3.29 Time History Analysis results - BISPEC (5storey building-mode3)……... 86 Table 3.30 Time History Analysis results - BISPEC (5storey building-mode4)……... 86 Table 3.31 Time History Analysis results - BISPEC (5storey building-mode5)……... 87 Table 3.32 Time History Analysis results - BISPEC (10storey building-mode1)……... 88 Table 3.33 Time History Analysis results - BISPEC (10storey building-mode2)……... 88 Table 3.34 Time History Analysis results - BISPEC (10storey building-mode3)……... 89 Table 3.35 Time History Analysis results - BISPEC (10storey building-mode4)……... 89 Table 3.36 Time History Analysis results - BISPEC (10storey building-mode5)……... 90 Table 3.37 Time History Analysis results - BISPEC (20storey building-mode1)……... 90 Table 3.38 Time History Analysis results - BISPEC (20storey building-mode2)……. 91 Table 3.39 Time History Analysis results - BISPEC (20storey building-mode3)……... 91 Table 3.40 Time History Analysis results - BISPEC (20storey building-mode4)……... 92 Table 3.41 Time History Analysis results - BISPEC (20storey building-mode5)……... 92 Table 4.1 Floor Displacement, Storey Drift (5-Storey building)(0.25EL-Centro) (MPA)…………………………………………………………………………………. 75 Table 4.2 Floor Displacement, Storey Drift (5-Storey building)(0.25EL-Centro) (RHA)…………………………………………………………………………………. 75 Table 4.3 Floor Displacement, Storey Drift (10-Storey building)(0.25EL-Centro) (MPA) ……………………………………………………………………………….. 76 Table 4.4 Floor Displacement, Storey Drift (10-Storey building)(0.25EL-Centro) (RHA) ……………………………………………………………………………….. 77 Table 4.5 Floor Displacement, Storey Drift (20-Storey building)(0.25EL-Centro) (MPA) ……………………………………………………………………………….. 77 Table 4.6 Floor Displacement, Storey Drift (20-Storey building)(0.25EL-Centro) (RHA) ………………………………………………………………………………… 80 Table 4.7 Mean Errors between MPA-RHA (5storey building)…………………..…... 100 Table 4.8 Mean Errors between MPA-RHA (10storey building)…...……………….... 107 Table 4.9 Mean Errors between MPA-RHA (20storey building)……………………... 114 Table 4.10 Mean Errors between MPA-RHA (among 3 buildings)…………………... 126 Table 4.11 Mean Errors between MPA-RHA (0.01EL-C, 5storey building)..………... 128

    1. Building Seismic Safety Council. NEHRP Guidelines for the Seismic Rehabilitation of Buildings, FEMA-273. Federal Emergency Management Agency: Washington, DC, 1997.
    2. Saiidi M, Sozen MA. Simple non-linear seismic analysis of R/C structures. Journal of Structural Division, ASCE 1981; 107(ST5):937–951.
    3. Miranda E. Seismic evaluation and upgrading of existing buildings. Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley, CA, 1991.
    4. Lawson RS, Vance V, Krawinkler H. Nonlinear static pushover analysis-why, when and how? Proceedings of the 5th U.S. Conference on Earthquake Engineering 1994; 1:283–292.
    5. Fajfar P, Gaspersic P. The N2 method for the seismic damage analysis of RC buildings. Earthquake Engineering & Structural Dynamics 1996; 25(1):31– 46.
    6. Maison B, Bonowitz D. How safe are pre-Northridge WSMFs? A case study of the SAC Los Angeles nine-storey building. Earthquake Spectra 1999; 15(4):765–789.
    7. Gupta A, Krawinkler H. Seismic demands for performance evaluation of steel moment resisting frame structures (SAC Task 5.4.3). Report No. 132, John A. Blume Earthquake Engineering Center, Stanford University, CA, 1999.
    8. Gupta A, Krawinkler H. Estimation of seismic drift demands for frame structures. Earthquake Engineering & Structural Dynamics 2000; 29:1287–1305.
    9. Skokan MJ, Hart GC. Reliability of non-linear static methods for the seismic performance prediction of steel frame buildings. Proceedings of the 12th World Conference on Earthquake Engineering, Paper No. 1972, Auckland, New Zealand, 2000.
    10. Krawinkler H, Seneviratna GDPK. Pros and cons of a pushover analysis of seismic performance evaluation. Engineering Structures 1998; 20(4–6):452– 464.
    11. Bracci JM, Kunnath SK, Reinhorn AM. Seismic performance and retrofit evaluation for reinforced concrete structures. Journal of Structural Engineering, ASCE 1997; 123(1):3–10.
    12. Gupta B, Kunnath SK. Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake Spectra 2000; 16(2):367–392.
    13. Paret TF, Sasaki KK, Eilbekc DH, Freeman SA. Approximate inelastic procedures to identify failure mechanisms from higher mode effects. Proceedings of the 11th World Conference on Earthquake Engineering. Paper No. 966, Acapulco, Mexico, 1996.
    14. Sasaki KK, Freeman SA, Paret TF. Multimode pushover procedure (MMP)-a method to identify the effects of higher modes in a pushover analysis. Proceedings of the 6th U.S. National Conference on Earthquake Engineering, Seattle, Washington, 1998.
    15. Kunnath SK, Gupta B. Validity of deformation demand estimates using non-linear static procedures. Proceedings U.S.–Japan Workshop on Performance-Based Engineering for Reinforced Concrete Building Structures, Sapporo, Hokkaido, Japan, 2000.
    16. Matsumori T, Otani S, Shiohara H, Kabeyasawa T. Earthquake member deformation demands in reinforced concrete frame structures. Proceedings U.S.–Japan Workshop on Performance-Based Earthquake Engineering Methodology for R=C Building Structures. Maui, Hawaii, 1999; 79–94.
    17. Anil K. Chopra and Rakesh K. Goel. A modal pushover analysis procedure for estimating seismic demands for buildings.
    18. F.R. Rofooeia, N.K. Attaria, A. Rasekhb and A.H. Shodjaa. ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 8, NO. 3 (2007), PAGES 343-358, ADAPTIVE PUSHOVER ANALYSIS.
    19. Ashraf Habibullah, S.E.1, and Stephen Pyle, S.E.2. Practical Three Dimensional Nonlinear Static Pushover Analysis (Published in Structure Magazine, Winter, 1998)

    QR CODE