簡易檢索 / 詳目顯示

研究生: 強皓卿
Hao-Qing Qiang
論文名稱: 尺寸效應對二氧化鈰包覆碳球殼核結構於室溫鐵磁性的影響
Study of different size effect on room temperature ferromagnetism of ceria@carbon core shell
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 郭東昊
Dong-Hau Kuo
駱芳鈺
Fang-Hau Lo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 100
中文關鍵詞: 二氧化鈰包覆碳球
外文關鍵詞: ceria@carbon
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中首先利用水熱法,調整前驅物種類(蔗糖或葡萄糖)及煆燒條件,合成出直徑為200 nm和900 nm的碳球。接著以溶膠凝膠法將二氧化鈰奈米顆粒披覆在碳球表面,形成CeO2@C核殼結構。最後再將此核殼結構在Ar+H2氣氛下進行還原退火。合成的樣品以X光繞射儀(X-ray diffraction, XRD)、掃描式電子顯微鏡(Scanning electron microscope, SEM)、穿透式電子顯微鏡(Transmission electron microscope, TEM)、拉曼光譜儀(Raman spectroscopy, Raman)、X光吸收光譜(X-ray absorption spectroscopy, XANES)進行結構上的分析,並進行室溫下的磁性量測,探討尺寸對CeO2@C磁性之影響。
    實驗結果顯示,此製程條件無法在直徑為200 nm的碳球上形成連續均勻的CeO2殼層。但可以成功在900 nm的碳球表面形成連續的CeO2殼層,其厚度與前驅物中六水硝酸鈰的濃度成正比。此外殼層中缺陷數量較文獻中直徑為450 nm的碳球上形成的CeO2殼層為高。經過還原退火後,殼層中的缺陷濃度可進一步提高。所有樣品都具備室溫鐵磁性,飽和磁化強度與CeO2殼層厚度成反比;在500 ℃下還原的CeO2@C,飽和磁化強度較未還原前提高達四倍。但與在直徑為450 nm的碳球上形成的CeO2@C核殼結構相比,在直徑為900 nm的碳球上形成的CeO2@C核殼結構鐵磁強度均較低。


    This study synthesized carbon spheres with 200 nm and 900 nm diameters by adjusting the type of precursor (sucrose or glucose) and sintering conditions by hydrothermal method. Then, the ceria nanoparticles were deposited on the carbon spheres by the sol-gel method to form a CeO2@C core-shell structure. Finally, the core-shell structure is annealed in an Ar+H2 atmosphere. X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), Raman spectroscopy (Raman spectroscopy, Raman), X-ray absorption spectroscopy (X-ray absorption spectroscopy, XANES) were utilized to investigate the structure and relate to the magnetic properties.
    The results show that a continuous CeO2 shell cannot be deposited on carbon spheres with a diameter of 200 nm by this synthetic method. However, on the surface of carbon spheres with a diameter of 900 nm, a continuous CeO2 shell can be successfully formed, and its thickness is proportional to the concentration of cerium nitrate hexahydrate in the precursor. In addition, defect concentration in the shell is higher than that of the CeO2 shell formed on carbon spheres with a diameter of 450 nm in the literature. After reduction annealing, the defect concentration in the shell can be further increased. All samples are ferromagnetic at room temperature, and the saturation magnetization is inversely proportional to the CeO2 shell thickness. The saturation magnetization of CeO2@C reduced at 500 °C is up to four times higher than that of the unreduced sample. Compared with the CeO2@C core-shell structure formed on carbon spheres with a diameter of 450 nm, the ferromagnetic intensity of the CeO2@C core-shell structure formed on carbon spheres with a diameter of 900 nm is lower.

    摘要 I ABSTRACT II 誌 謝 IV 目 錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧與理論介紹 3 2.1 稀磁性半導體 3 2.1.1 稀磁性半導體介紹 3 2.1.2 稀磁性半導體之磁性來源 4 2.2 材料介紹 10 2.2.1 碳基板介紹 10 2.2.2 碳球的合成 10 2.2.3二氧化鈰的結構介紹 12 2.2.4二氧化鈰的製備方法 14 2.2.5二氧化鈰的磁性 17 第三章 實驗方法與儀器介紹 23 3.1 碳球以及二氧化鈰奈米顆粒的製備 23 3.1.1 藥品以及退火條件 23 3.1.2 碳球的製備 23 3.1.3 二氧化鈰包覆不同尺寸的碳之製備流程 26 3.1.4 相同溫度不同比例還原之CeO2@C 28 3.2 X光繞射分析 29 3.3 掃描式電子顯微鏡 30 3.4 場發射穿透式電子顯微鏡 31 3.5 拉曼光譜分析 33 3.6 X光吸收光譜 34 3.7 振動樣品磁力分析儀 38 第四章 結果與討論 40 4.1 製備小碳球之研究 40 4.2不同前驅物製備大碳球之研究 42 4.3 二氧化鈰包覆小碳球之磁性變化 44 4.3.1 XRD分析 45 4.3.2 SEM影像分析 46 4.3.3 TEM影像分析 47 4.3.4 RAMAN光譜分析 49 4.3.5 VSM磁性分析 52 4.3.6 綜合討論 53 4.4 二氧化鈰包覆大碳球之磁性變化 54 4.4.1 SEM影像分析 56 4.4.2 XRD分析 57 4.4.3 TEM影像分析 58 4.4.4 RAMAN光譜分析 61 4.4.5 XANES光譜分析 64 4.4.6 VSM磁性分析 66 4.4.7 綜合討論 67 4.5 二氧化鈰還原與磁性關聯之研究 70 4.5.1 XRD分析 71 4.5.2 SEM影像分析 72 4.5.3 RAMAN光譜分析 73 4.5.4 VSM分析 75 4.5.5 綜合討論 76 第五章結論 77 參考文獻 79

    [1] M. Coey, K. Ackland, M. Venkatesan, S. Sen. “Collective magnetic response of CeO2 nanoparticles.” Nature Physics 12(7), 694-699, (2016).
    [2] 胡裕民,“III-V稀磁性半導體薄膜之研究與發展.”物理雙月刊, 26,587-598,(2004).
    [3] K. C. Ku, S. J. Potashnik, R. F. Wang, S. H. Chun, P. Schiffer, N. Samarth, M. J, Seong, A. Mascarenhas, E. Johnston-Halperin, R. C. Myers, A. C. Gossard, D. D. Awschalom. “Highly enhanced Curie temperature in low-temperature annealed [Ga,Mn]As epilayers.” Appl. Phys. Lett. 82, 2302-2304, (2003).
    [4] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. lye. “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs.” Appl. Phys. Lett. 69, 363-365, (1996).
    [5] C. Zener. “Interaction between the d shells in the transition metals.” Physical Review 81, 440- (1951)..
    [6] K. Ackland, J. M. D. Coey. “Room temperature magnetism in CeO2-A review.” Physics Reports, 746, 1-39, (2018).
    [7] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand. “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors.” Science, 287, 1019-1022, (2000).
    [8] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald. “Donor impurity band exchange in dilute ferromagnetic oxides.” Nature materials, 4, 173-179, (2005).
    [9] S. Sen, K. S. Gupta, J. M. D. Coey, “Mesoscopic structure formation in condensed matter due to vacuum fluctuations.” Physical Review B, 92, 155115, (2015).
    [10] BT. Zhang, XX. Zheng, HF. Li, JM. Lin, “Application of carbon-based nanomaterials in sample preparation: A review.” Analytica Chimica Acta, 784, 1-17, (2013).
    [11] J. B. Joo, Y. J. Kim, W. Kim, P. Kim, J. Yi, “Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro-oxidation.” Catalysis Communications, 10, 267-271, (2008).
    [12] P. M. Ajayan, “Nanotubes from carbon.” Chem. Rev, 99, 1787-1799, (1999).
    [13] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, “Mechanical properties of carbon nanotubes.” Applied Physics A, 69, 255-260, (1999).
    [14] T. Otowa, Y. Nojima, T. Miyazaki, “Development of KOH activated high surface area carbon and its application to drinking water purification.” Carbon, 35, 9, 1315-1319, (1997).
    [15] A. L. M. Reddy, S. Ramaprabhu, “Synthesis and characterization of magnetic metal-encapsulated multi-walled carbon nanobeads.” Nanoscale Research Letters, 3, 76-81, (2008).
    [16] M. M. Sabzehmeidani, S. Mahnaee, M. Ghaedi, H. Heidari, V. A. L. Roy, “Carbon based materials: a review of adsorbents for inorganic and organic compounds.” Materials Advances, 2, 598-627, (2021).
    [17] J. B. Joo, Y. J. Kim, W. Kim, P. Kim, J. Yi, “Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro-oxidation.” Catalysis Communications, 10, 3, 267-271, (2008).
    [18] X. M. Sun, Y. D. Li, “Colloidal carbon spheres and their core/shell structures with noble‐metal nanoparticles.” Angewandte Chemie International Edition, 43, 5, 597-601, (2004).
    [19] J. Liu, S. Z. Qiao, H. Liu, J. Chen, A. Orpe, D. Y. Zhao, G. Q. Lu, “Extension of The Stöber Method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres.” Angewandte Chemie, 123, 26, 6069-6073, (2011).
    [20] M. Li, W. Li, S. X. Liu, “Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method.” Materials Research, 27, 8, 1117-1123, (2012).
    [21] S. C. Kishore, S. Anandhakumar, M. Sasidharan, “Direct synthesis of solid and hollow carbon nanospheres over NaCl crystals using acetylene by chemical vapour deposition.” Applied Surface Science, 400, 90-96, (2017).
    [22] A. Trovarelli, “Catalytic properties of ceria and CeO2-Containing materials.” Catalysis Reviews, 38, 439-520, (1996).
    [23] N. Izu, W. Shin, N. Murayama, “Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder.” Sensors and Actuators B: Chemical, 93, 449-453, (2003).
    [24] N. M. Sammes, Z. Cai, “Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials.” Solid State Ionics, 100, 39-44, (1997).
    [25] J. C. G. Bϋnzli, V. K. Pecharsky, “Handbook on the Physics and Chemistry of Rare Earths.” North Holland, 3, (1984).
    [26] N. B. Kirk, J. V. Wood, “The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing.” Journal of Materials Science, 30, 2171-2175, (1995).
    [27] X. L. Song, G. Z. Qiu, P. Qu. “Advances in research on applications and synthesis methods of CeO2 nanoparticles.” Rare metal materials and engineering, 33, 6, 29-34, (2004).
    [28] P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, “Structure-dependent electronic properties of nanocrystalline cerium oxide films.” Physical Review B, 68, 3, (2003).
    [29] YL. Liu, Z. Lockman, A. Aziz, J. M. M. Driscoll, “Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies.” Journal of Physics: Condensed Matter, 20, 16, (2008).
    [30] XB. Chen, GS. Li, YG. Su, XQ. Qiu, LP. Li, ZG. Zou, “Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping.” Nanotechnology, 20, 11, (2009).
    [31] HR. Xu, L. Gao, HC. Gu, JK. Guo, DS. Yan. “Synthesis of solid, spherical CeO2 particles prepared by the spray hydrolysis reaction method.” Journal of the American Ceramic Society, 85, 1, 139-144, (2002).
    [32] M. L. D. Santos, R. C. Lima, C. S. Riccardi, R. L. Tranquilin, P. R. Bueno, J. A. Varela, E. Longo, “Preparation and characterization of ceria nanospheres by microwave-hydrothermal method.” Materials Letters, 62, 30, 4509-4511, (2008).
    [33] D. Kéomany, C. Poinsignon, D. Deroo, “Sol gel preparation of mixed cerium-titanium oxide thin films.” Solar Energy Materials and Solar Cells, 33, 4, 429-441, (1994).
    [34] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C. N. R. Rao, “Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides.” Physical Review B, 74, 16, (2006).
    [35] E. N. Tseng, Y. T. Hsiao, Y. C. Chen, S. Y. Chen, A. Gloter, “Magnetism and plasmonic performance of mesoscopic hollow ceria spheres decorated with silver nanoparticles.” Nanoscale, 11, 8, 3574-3582, (2019).
    [36] C. Falco, N. Baccile, MM. Titirici, “Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons.” Green Chemistry, 13, 11, 3273-3281, (2011).
    [37] A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination.” Physical Review Journals Archive, 56, 978-982, (1939).
    [38] K. D. Vernon-Parry, “Scanning electron microscopy: an introduction.” III-Vs review, 13, 4, 40-44, (2000).
    [39] J. I. Goldstein, D. E. Newburry, P. Echlin, D. C. Joy, C. E. Lyman, E. Lifshin, L. Sawyer, J. R. Michael, “Quantitative X-ray Analysis: The Basics.” Scanning Electron Microscopy and X-ray Microanalysis, 391-451, (2003).
    [40] R. Keyse, “Introduction to scanning transmission electron microscopy.” Routledge, (2018).
    [41] 林智仁,“場發射穿透式電子顯微鏡簡介.”工業材料雜誌,201,90-98,(2003).
    [42] P. Rostron, S. Gaber, D. Gaber, “Raman Spectroscopy, review.” Laser, 21, 24, (2016).
    [43] D. C. Koningsberger, R. Prins, “X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES.” (1988).
    [44] DE. Sayers, EA. Stern, FW. Lytle, “New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray-absorption fine structure.” Physical review letters, 27, 18, (1971).
    [45] P. Durham, A. Bianconi, A. C. Castellano, A. Giovannelli, S. S. Hasnain, L. Incoccia, S. Morante, J. B. Pendry, “X‐ray absorption near edge structure (XANES) for CO, CN and deoxyhaemoglobin: geometrical information.” The EMBO journal, 2, 9, 1441-1443, (1983).
    [46] B. Skårman, T. Nakayama, D. Grandjean, R. E. Benfield, E. Olsson, K. Niihara, L. R. Wallenberg, “Morphology and Structure of CuOx/CeO2 Nanocomposite Catalysts Produced by Inert Gas Condensation: An HREM, EFTEM, XPS, and High-Energy Diffraction Study.” Chemistry of Materials, 14, 3686-3699, (2002).
    [47] WC. Tsai, TY. Tseng, “Structural and electrical properties of cerium dioxide films grown by RF magnetron sputtering.” Journal of Materials Science: Materials in Electronics, 8, 313-320, (1997).
    [48] H. Zhao, X. Lu, Y. Wang, B. Sun, X. Wu, H. Lu, “Effects of additives on sucrose-derived activated carbon microspheres synthesized by hydrothermal carbonization.” Journal of Materials Science, 52, 10787-10799, (2017).
    [49] A. A. Deshmukh, S. D. Mhlanga, N. J. Coville, “Carbon spheres.” Materials Science and Engineering: R: Reports, 70, 1-2, 1-28, (2010).
    [50] M. Li, W. Li, S. Liu. “Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method.” Journal of Materials Research, 27, 8, 1117-1123, (2012).
    [51] Z. V. Popović, Z. Dohcevic-Mitrovic, M. Scepanovic, M. Grujic-Brojcin, S. Askrabic, “Raman scattering on nanomaterials and nanostructures.” Annalen der Physik, 523, 62-74, (2011).
    [52] A. Dychalska, P. Popielarski, W. Frankow, K. Fabisiak, K. Paprocki, M. Szybowicz, “Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy.” Materials Science-Poland, 33, 4, 799-805, (2015).
    [53] A. S. Saleemi, R. Singh, Z. Luo, X. Zhang, “Structure dependent negative magnetoresistance of amorphous carbonthin films.” Diamond and Related Materials, 72, 108-113, (2017).
    [54] Y. Chen, T. Wang, J. Pan, A. Chen, Y. Chen, “Design and fabrication of carbon spheres-supported cerium oxide heterostructured composites for enhanced photocatalytic activity.” Ceramics International, 48, 17714-17722, (2022).
    [55] P. Nachimuthu, WC. Shih, RS. Liu, LY. Jang, JM. Cheng, “The study of nanocrystalline cerium oxide by X-ray absorption spectroscopy.” Journal of Solid State Chemistry, 149, 2, 408-413, (2000).
    [56] C. H. T. Tseng, B. K. Paul, C. H. Chang, M. H. Engelhard, “Continuous precipitation of ceria nanoparticles from a continuous flow micromixer.” The International Journal of Advanced Manufacturing Technology, 64, 1, 579-586, (2013).
    [57] C. Laberty-Robert, J. W. Long, E. M. Lucas, K. A. Pettigrew, R. M. Stroud. M. S. Doescher, D. R. Rolison, “Sol−gel-derived ceria nanoarchitectures: synthesis, characterization, and electrical properties.” Chemistry of materials, 18, 1, 50-58, (2006).
    [58] D. J. Lee, P. K. Hsu, Y. C. Chen, A. Gloter, S.Y. Chen. “Surface and interface mediated magnetism in mesoscopic ceria@carbon core–shell structures.” Surfaces and Interfaces, 38, (2023).
    [59] R. F. Egerton, “Electron energy-loss spectroscopy in the electron microscope.” Springer Science and Business Media, (2011).
    [60] S. Foner, “Versatile and sensitive vibrating‐sample magnetometer.” Review of Scientific Instruments, 30, 7, 548-557, (1959).
    [61] S. Prawer, R. J. Nemanich. “Raman spectroscopy of diamond and doped diamond.” Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 362, 1824, 2537-2565, (2004).

    無法下載圖示 全文公開日期 2033/08/16 (校內網路)
    全文公開日期 2073/08/16 (校外網路)
    全文公開日期 2073/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE