簡易檢索 / 詳目顯示

研究生: 黃子昂
Tz-Ang Huang
論文名稱: 具三角波切換之變頻電流模式降壓轉換器
A Frequency-Hopping Current-Mode Buck Converter with Triangular Wave Switching
指導教授: 羅有綱
Yu-Kang Lo
劉邦榮
Pang-Jung Liu
邱煌仁
Huang-Jen Chiu
口試委員: 歐勝源
Sheng-Yuan Ou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 111
中文關鍵詞: 低輸出雜訊跳頻展頻電流模式控制
外文關鍵詞: Low output noise, Frequency Hopping Spread Spectrum, Current-Mode control
相關次數: 點閱:291下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今的消費性電子市場,可攜式電子產品的蓬勃發展,使得直流—直流轉換器逐漸成為電源供應不可或缺的一環。然而切換式轉換器的高輸出雜訊限制了其應用範圍,跳頻展頻方式為改善輸出雜訊方法之一。但跳頻時產生的輸出電壓擾動,使得轉換器的效能表現下降。
    本論文提出具三角波切換之電流模式降壓轉換器。此轉換器除了可以改善輸出雜訊,也減少跳頻時所產生的輸出電壓擾動。此轉換器使用TSMC 0.35µm 2P4M CMOS製程來設計,晶片面積為1.45×1.53mm2。操作頻率為1.5 MHz到5.5 MHz,與未變頻相比,最大輸出雜訊改善可達30 dB,而輸出電壓漣波為12 mV。與其他相關文獻的比較,輸出電壓漣波值有極大的改善值,也加大了轉換器的應用範圍。


    In today’s consumer market, portable electronic devices are a great demand to make dc-dc converters becoming indispensable for power supply. However, the high output voltage noise of dc-dc converters restricts the applications. One methodology to reduce the output voltage noise is achieved with FHSS (Frequency Hopping Spread Spectrum) technique. The technique causes output voltage variation when the switching frequency varies, so the performance of the dc-dc converters will be degraded.
    This thesis presents a current-mode buck converter with triangular-wave switching. The converter not only improves the output voltage noise, but also reduces the output voltage variation when the switching frequency hops. This converter was designed with TSMC 0.35μm 2P4M CMOS process, and the chip size is 1.45×1.53mm2. The operating frequency is from 1.5 MHz to 5.5 MHz and the interval between those frequencies is 0.5MHz.The maximum output noise reduction is about 30dB and the output voltage ripple is only 12 mV. Compared with previous works, the value of the output voltage ripple is significantly reduced to broaden the application range of the dc-dc converters.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 論文架構 2 第二章 直流-直流轉換器 3 2.1 穩壓器分類與概論 3 2.1.1 線性穩壓器簡介 4 2.1.2 切換式穩壓器簡介 5 2.1.3 切換式降壓穩壓器 7 2.2 控制電路分類 10 2.2.1 電壓控制模式 10 2.2.2 電流控制模式 11 2.2.3 電壓模式控制與電流模式控制之比較 16 2.3 切換式穩壓器各種參數說明 17 2.3.1 開關元件 17 2.3.2 操作頻率 18 2.3.3 電感 19 2.3.4 電容 23 2.3.5 脈衝調變控制機制 25 2.3.6 連續導通模式/不連續導通模式 27 2.3.7 暫態響應 28 2.3.8 線調節度 29 2.3.9 負載調節度 30 2.3.10 轉換效率 30 第三章 三角波切換之電流模式降壓轉換器 32 3.1 三角波與鋸齒波分析 33 3.2 跳頻架構與原理分析 36 3.2.1 相關文獻比較 40 3.2.2 完整跳頻架構分析 43 3.3 電壓模式控制與電流模式控制跳頻比較 47 3.3.1 無變頻比較 47 3.3.2 兩頻率跳頻比較 48 3.3.3 完整跳頻比較 53 第四章 電路介紹與模擬結果 56 4.1 類比電路 56 4.1.1 三角波產生器 56 4.1.2 比較器 58 4.1.3 驅動級 61 4.1.4 轉導放大器與頻率補償 63 4.1.5 電壓轉電流轉換器 65 4.1.6 電感電流感測電路 68 4.2 數位電路 71 4.2.1 線性回授移位暫存器 71 4.2.2 計數器/除頻器 73 4.2.3 完整數位電路 74 第五章 模擬結果與晶片佈局 76 5.1 佈局圖 76 5.2 輸出電壓頻譜與電壓漣波模擬結果 79 5.3 規格模擬 83 5.3.1 線調節率 83 5.3.2 負載調節率 84 5.3.3 效率 86 第六章 結論與未來展望 89 6.1 結論 89 6.2 未來展望 89 參考文獻 90

    參考文獻
    [1] J.W. Xiao, A. Peterchev, and J. S. Sanders, “An Ultra-Low-Power Digitally-Controlled Buck Converter IC for Cellular Phone Applications,” in Proc. IEEE Applied Power Electronics Conference and Exposition, vol.1,pp. 383-391, 2004.

    [2] 陳秋麟 “電源管理積體電路設計” National Taiwan University Course,2011.

    [3] C.Y. Wang “A Current-Mode Buck Regulator with an Adjusted-Slope Compensation Ramp,” National Cheng Kung University MS. Thesis, 2005.

    [4] R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA:Kluwer, 2001.

    [5] J. Y. Guo, “Investigating Feedforward Mechanism in Current Mode Control,”in Proc. IEEE Applied Power Electronics Conference and Exposition , pp. 1008-1013,2006.

    [6] C. F. Lee, and P.K.T. Mok, “A monolithic current-mode CMOS DC-DC Converter with On-Chip Current Sensing Technique,” IEEE J.Solid-State Circuit, Vol. 39, Issue 1, pp.3-14,Jan. 2004.

    [7] Dr. Ray Ridly “Current Mode or Voltage Mode?, ”Switching Power Magazine, Oct.2000.

    [8] N. Mohan, Tore M. Undeland, and William P. Robbins, “Power Electronics: Converters, Applications, and Design”, 3rd Edition, Wiley.

    [9] C. Chang, “Robust Control of DC-DC Converters: The Buck Converter”, in Proc. IEEE Power Electronics Specialists Conference, Volume 2, pp.1094 – 1097, Jun 1995.

    [10] P. Y. Kuo, D. Zhou, and Z. M. Lin “A Low-Dropout Regulator with Low ESR, Low Line Regulation and High Currency Efficiency Using Low Output-Resistance Voltage Buffer,” in Proc. Electron Devices and Solid-State Circuits, IEEE Conference, pp.473- 476,2007.

    [11] T.Y. Yu “A High-Efficiency Synchronous CMOS Switching Regulator with PWM/PFM-Mode Operation, ” National Chiao Tung University MS. Thesis, 2003.

    [12] J.N. Kitchen, C. Chu, S. Kiaei, and B. Bakkaloglu, “Combined Linear and Modulated Switch-Mode PA Supply Modulator for Polar Transmitters,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 404-413, Feb. 2009.

    [13] C. Tao and A. A. Fayed, “Spurious-noise-free buck regulator for direct powering of analog/RF loads using PWM control with random frequency hopping and random phase chopping,” in Proc. IEEE ISSCC, pp. 396–397, Feb. 2011.

    [14] N.Y HO, and P.K.T. Mok, “Ramp Signal Generation in Voltage Mode CCM Random Switching Frequency Buck Converter for Conductive EMI Reduction,” IEEE Custom Integrated Circuits Conference, pp.1-4, sept.2010.

    [15] P.J Liu, J.N Tai, H.S Chen, J.H Chen, and Y.J. Chen, “Spur-Reduction Design of Frequency-Hopping DC–DC Converters,” IEEE Transactions on Power Electronics, Vol.27, No.11, pp. 4763-4771, Nov. 2012.

    [16] S. K. Dunlap, and T. S. Fiez, “A noise-shaped switching power supply using a delta–sigma modulator,” IEEE TCAS-I, vol.51, no.6, pp. 1051–1061, Jun. 2004.

    [17] J. N. Kitchen, I. Deligoz, S. Kiaei, and B. Bakkaloglu, “Polar SiGe class E and F amplifiers using switch-mode supply modulation,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 845–856, May 2007.

    [18] C. Tao and A. A. Fayed, “A Buck Converter With Reduced Output Spurs Using Asynchronous Frequency Hopping” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol.58 ,No.11,pp 709-713,2011.

    [19] E.J. Kim, C.H. Cho, and W. Kim, “Spurious Noise Reduction by Modulating Switching Frequency in DC-to-DC Converter for RF Power Amplifier” IEEE RFIC Symposium, pp. 43-46, May, 2010.

    [20] R. Jacob Baker, “CMOS Circuit Design, Layout, and simulation” Wiley, 2011.

    [21] D. M. Monticelli, “A quad CMOS single-supply op amp with rail-to-Rail output swing,” IEEE J. Solid-State Circuits, vol. 21, pp. 1026–1034,Dec. 1986.

    [22] A. J. Stratakos, S. R. Sanders, and R. W. Brodersen, “A low-voltage CMOS DC–DC converter for a portable battery-operated system,” in Proc. IEEE Power Electronics Specialists Conf., pp. 619–626,1994.

    [23] P.T. Krein, Elements of Power Electronics. New York, NY: Oxford Univ. Press, 1998.

    [24] C. Yoo, “A CMOS buffer without short-circuit power consumption,”
    IEEE Trans. Circuits Syst. II, vol. 47, pp. 935–937, Sept. 2000.

    [25] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, MA

    [26] L. Christen , O. Yilmaz , S. Nuccio , X. Wu , and A. E. Willner,“Optical Pseudo-Random Bit Sequence Generator using a Dual-Drive Mach-Zehnder Modulator as a Linear Feedback Shift Register" In Proc. IEEE Lasers and Electro-Optics Society, pp.274-275,2008.

    [27] M. Perlman, “The Decomposition of the States of a Linear Feedback Shift Register Into Cycles of Equal Length” IEEE Transactions on Circuits and system, vol.19, no.11,pp.1029-1035,1970.

    無法下載圖示 全文公開日期 2017/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE