簡易檢索 / 詳目顯示

研究生: 謝奇諺
Chi-yen Hsieh
論文名稱: 無橋及雙相交錯主動功率因數修正器之研製
Design and Implementation of Bridgeless and Two-phase Interleaved Active Power Factor Correctors
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 劉益華
Yi-Hua Liu
林忠義
Lin Chung-Yi
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 124
中文關鍵詞: 無橋式功率因數修正器交錯式功率因數修正器平均電流控制模式。
外文關鍵詞: Bridgeless Power Factor Corrector, Interleaved Power Factor Corrector, Average Current Control Mode.
相關次數: 點閱:513下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主旨在於討論功率因數修正器之設計,研製一具有高功因、高效率、低電流諧波及高功率密度之升壓型功率因數修正器,且在高輸出功率下更可改善功率元件高耐流、儲能電感體積過大、輸出電容過大及EMI濾波器體積…等問題,並針對其種類及控制策略進行分析與比較。最後以升壓型轉換器做為主電力電路架構,採用固定切換頻率及平均電流控制模式,以降低輸入電流諧波,並使輸入電流與電壓同相,達到功率因數達到趨近於1之目的。
在實作上以NCP1653及UCC28070做為控制IC,分別研製2 kW無橋式功率因數修正器及雙相交錯式功率因數修正器。實驗結果驗證了所採控制技術之正確性與可行性,同時也提及後續可能的研究方向,以期更為提高功率及效率。


This thesis is focused on the design and implementation of boost power factor correctors (PFC) to achieve a high power factor, low input current harmonics, high efficiency and high power density. In addition, the voltage and current ratings of the power switches, and the volumes of inductors, output capacitors and EMI filters can be reduced. Various types of PFC topologies and several control schemes are also discussed and compared. Finally, the average current mode control with a constant switching frequency is adopted. The main objective is to reduce the input current harmonics and to achieve a unity power factor.
Two 2-kW PFC(bridgeless power factor corrector and two-phase interleaved boost power factor corrector) prototypes are implemented based on the NCP1653 and UCC28070 control IC’s, respectively. Satisfactory experimental results confirm the validity and feasibility of the adopted schemes. Potential future works are mentioned to further improve the power level and conversion efficiency.

摘 要i Abstractii 誌 謝iii 目 錄iv 圖索引vii 表索引xiii 第一章 緒論1 1-1 研究動機及目的1 1-2 內容大綱3 第二章 功率因數修正原理5 2-1 功率因數與總諧波失真之定義5 2-2 功率因數修正器之種類8 2-2-1 被動式功率因數修正器8 2-2-2 主動式功率因數修正器10 2-3 功率因數修正器之架構11 2-3-1 降壓型電路架構11 2-3-2 升降壓型電路架構12 2-3-3 升壓型電路架構13 2-4 升壓型功率因數修正器之原理14 第三章 無橋式功率因數修正器之架構與原理17 3-1 前言17 3-2 功率因數修正器架構之工作原理17 3-2-1 單開關標準式17 3-2-2 雙開關標準式20 3-2-3 雙開關半橋式24 3-2-4 四開關標準式27 3-3 單開關標準架構與無橋式架構之比較32 3-4 電流控制模式33 3-4-1 電壓隨耦控制法34 3-4-2 乘法器控制法36 3-4-2-1 平均電流控制法38 3-4-2-2 峰值電流控制法40 3-4-2-3 磁滯電流控制法41 第四章 多相式升壓型轉換器理論與分析43 4-1 多相式升壓型轉換器介紹43 4-2 雙相交錯式升壓型轉換器電路分析45 4-3 雙相交錯式升壓型轉換器動作時序分析48 4-4 儲能電感分析51 4-5 輸出電容分析53 4-6 功率開關及功率二極體分析56 4-7 雙相式升壓型轉換器輸入漣波電流分析57 第五章 以NCP1653及UCC28070設計之功率因數修正器60 5-1 無橋式升壓型功率因數修正器60 5-1-1 NCP1653 IC內部方塊圖與接腳圖介紹60 5-1-2 NCP1653 IC特性62 5-2 雙相交錯式升壓型功率因數修正器64 5-2-1 UCC28070 IC內部方塊圖與接腳圖介紹64 5-2-2 UCC28070 IC特性68 5-3 設計實例與分析84 5-3-1 無橋式升壓型功率因數修正器設計考量85 5-3-2 雙相交錯式升壓型功率因數修正器設計考量89 第六章 實驗數據與波形99 6-1 無橋式升壓型功率因數修正器之實驗波形99 6-2 雙相交錯式升壓型功率因數修正器之實驗波形107 6-3 無橋式升壓型與雙相交錯式升壓型功率因數修正器之實驗結果比較115 第七章 結論與未來展望118 7-1結論118 7-2未來研究方向建議119 參考文獻121

[1]Pressman, “Switching Power Supply Design,” McGraw-Hill, Inc., 1998.
[2]宋自恆、林慶仁,「功率因數修正器之原理與常用元件規格」,新電子科技雜誌217期,民國93年4月。
[3]洪瑞鴻,「2kW功率因數修正器研製」,國立臺灣科技大學電子工程系研究所碩士論文,民國94年。
[4]N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics: Converters, Applications and Design”, John Wiley & Sons, 3rd Edition, 2003.
[5]Sangsum Kim and Prasad N. Enjeti, “A Modular Single-Phase Power Factor Correction Scheme with a Harmonic Filtering Function”, IEEE Transactions on Industrial Electronics, Vol. 50, No. 2, pp.328-335, April. 2003.
[6]Richard Redl, “An Economical Single-Phase Passive Power Factor Corrected Rectifier: Topology, Operation, Extensions, and Design for Compliance”, Applied Power Electronics Conference and Exposition, APEC '98. Conference Proceedings, Vol. 1, pp. 454-460, February. 1998.
[7]S. Manias, “Novel Full Bridge Semicontrolled Switch Mode Rectifier,” IEE Proc. Electric Power Applications, vol. 138, no. 5, pp.252-256, Sept., 1991.
[8]R. Martinez and P. N. Enjeti, “A High-Performance Single-Phase Rectifier with Input Power Factor Correction,” IEEE Trans. Power Electronics, vol. 11, no. 2, pp. 311-317, Mar. 1996.
[9]R. I. Deng, and K. Ishizaka, “Single-Phase Sinusoidal Converter Using MOSFETs,” IEE Proc. Electric Power Applications, vol. 136, pt. 13, no. 5, pp. 237-242, Sept., 1989.
[10]NCP1653, NCP1653A Compact, Fixed−Frequency, Continuous Conduction Mode PFC Controller.
[11]Four Key Steps to Design a Continuous Conduction Mode PFC Stage Using NCP1653.
[12]Z.Chen, “Active Boost Power Factor Analysis and Design” IBM Corporation, April 20, 1989.
[13]Texas Instruments Inc., “Interleaving Continuous Conduction Mode PFC Controller,” Data Sheet, 2008.
[14]Texas Instruments Inc., “350-W Interleaved PFC Pre-Regulator,” User's Guide, 2005.
[15]Texas Instruments Inc., “350-W, Two-Phase Interleaved PFC Pre-Regulator Design Review,” Application Report, 2005.
[16]Lei Hual-Gang, Yang Xi-jun, Miao Hai-liang, and Ye Peng-sheng, “Power Switch Deiving Techniques in Single-Phase Dual-Parallel Interleaved Boost PFC”, Power Electronics and Drive Systems, PEDS 2003, Vol. 2, pp.1086-1089, November. 2003.
[17]C. S. Babu, M. J. Veerachary, “Predictive Controller for Interleaved Boost Converter” Proc. of IEEE ISIE.2005,pp.577-581,June 2005.
[18]蔡智偉,「1-kW交錯式升壓型功率因數修正器研製」,國立台灣科技大學電子工程系研究所碩士論文,民國98年1月。
[19]N. Mohan, T.-M. Undeland, and W.-P. Robbins, “Power electronics, ” Third Edition.
[20]C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of Low Frequency Harmonics for Continuous-Conduction-Mode Boost Power-Factor Correction,” IEE Proc. Electric Power Applications, vol. 148, pp.202-206, 2001.
[21]R. Oruganti, K. Nagaswamy and L. K. Sang, “Predicted (on-time) Equal-Charge Criterion Scheme for Constant-Frequency Control of Single-Phase Boost-Type AC-DC Converters,” IEEE Trans. Power Electronics, vol. 13, no. 1, pp. 47-57, Jan. 1998.
[22]O. Stihi, and B. T. Ooi, “A Single-Phase Controlled-Current PWM Rectifier,” IEEE Trans. Power Electronics, vol. 3, no. 4, pp. 453-459, Oct. 1988.
[23]J. W. Lim, and B. H. Kwon, “A Power-Factor Controller for Single-Phase PWM Rectifiers,” IEEE Trans. Industrial Electronics, vol. 46, no. 5. pp. 398-404, May 2002.
[24]S. Manias, P. D. Ziogas and G. Olivier, “An AC-to-DC Converter with Improved Input Power Factor and High Power Density,” IEEE Trans. Ind. Appl., vol. 22, no. 6, pp. 1073-1081, 1986.
[25]R. Martinez, and P. N. Enjeti, “A High Performance Single Phase AC to DC Rectifier with Input Power Factor Correction,” IEEE Trans. Power Electronic, vol. 11, no. 2, pp. 311-317, Mar. 1996.
[26]P. N. Enjeti, and R. Martinez, “A High Performance Single Phase AC to DC Rectifier with Input Power Factor Correction,” IEEE Proc. APEC’93, pp. 190-195, 1993.
[27]L. Huber, Y. Jang, Jovanovic, and M. Milan, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Proc. APEC’07, pp. 165-171, 2007.
[28]黃耀億,「無橋式功率因數修正器之研製」,國立台灣科技大學電子工程系研究所碩士論文,民國96年7月。
[29]P. C. TODD, “UC3854 Controlled Power Factor Correction Circuit Design, ” Unitrode Application Note U-134.
[30]“Power Factor Corrector,” STMicroelectronics, L4981A, Oct. 2000.
[31]U. Moriconi, “Designing A High Power Factor Switching Preregulatior with the L4981 Continuous Mode,” STMicroelectronics Application Note AN628, Feb. 2003.
[32]Texas Instruments Inc., “Interleaving Continuous Conduction Mode PFC Controller,” Data Sheet, 2008.

QR CODE