簡易檢索 / 詳目顯示

研究生: 黃魁銓
Huang-Kuei Chuan
論文名稱: 規則節理岩坡鐵塔加載之工程行為探討
The Engineering Behavior of Rock Slope with Regular Joint Set under Tower Loading
指導教授: 陳志南
Chee-Nan Chen
口試委員: 林宏達
HONG-DA LIN
林志森
ZHI-SEN LIN
彭桓沂
Huan-Yi Peng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 197
中文關鍵詞: 規則節理岩坡鐵塔
外文關鍵詞: Regular Joint, Rock Slope, Tower
相關次數: 點閱:452下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

台灣平地有限,山地及丘陵佔了全省面積三分之二以上,故許多工程朝向山地發展是不可避免的趨勢,因此需要去面對邊坡穩定之相關課題。本研究針對構築於節理岩坡上之鐵塔,模擬鐵塔承受垂直與水平載重之三種不同組合,探討整體岩坡穩定相關之工程行為。研究利用UDEC軟體進行數值模式分析,於一組及兩組規則節理岩坡鐵塔受到三種不同組合載重下,分析的重點在於伴隨岩坡應力之調整、節理面之錯動、張力裂縫及塑性區之產生及發展等等。
研究結果顯示,規則節理岩坡之工程行為會受節理組數及作用於鐵塔之不同載重組合影響,於研究範圍內最危險情況為包含垂直與水平載重,且水平載重沿節理之分量會下推鐵塔。經由漸進式破壞相關歷程之應力等壓線、位移分佈及塑性區發展,可以作為規則節理岩坡鐵塔營運期間之維護與監測之參考。


The land availability is not enough because mountainous and hilly area is over two-thirds in Taiwan. It is unavoidable that more and more constructions are compelled towards hills, and slope stability becomes a big issue to engineers. This research focuses on the engineering behavior of rock slope with one or two regular jointed set under tower loading. In order to understand the overall stable characteristic of the tower and slope, Three different combinations of tower loading near slope were applied. Numerical code UDEC was used to build numerical model and perform analysis in the study. The investigation focused of three different combination of tower loading on the rock slope. Important analytic issues include stress redistribution; slip dislocations of joints, tensile cracks and the development of the plastic zone.
The analytical results show that the mechanical behavior of tower built in regular jointed rock slope is influenced on the tower loading, numbers of joint set within the study scope. The most critical situation happens while the tower loading consists of vertical and horizontal loading, and the parallel joint component of horizontal loading is to push down the tower. Base on the equal-stress contour, the magnitude of deformation and plastic zone of the overall slope under different progressive periods, some suggestions are proposed for remediation and monitoring of tower built in regular jointed rock slope.

目錄 論文摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XVII 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3研究內容與流程 3 第二章 文獻回顧 5 2.1傾倒破壞之類型 6 2.1.1逆向坡之傾倒種類 6 2.1.2次要傾倒之傾倒種類 (Secondary Toppling) 8 2.2單一塊體傾倒之基本理論 10 2.3傾倒破壞機制 13 2.4傾倒破壞之相關研究 14 2.4.1物理試驗(physical models) 15 2.4.2極限平衡法(limit equilibrium method) 15 2.5岩石材料之力學行為 17 2.5.1均質岩石材料之力學行為 17 2.5.2節理岩石材料之力學行為 18 2.5.3節理勁度對弱面變形之影響 20 2.5.4節理組數對岩體強度之影響 23 第三章 分析方法說明 24 3.1 UDEC程式的發展與理論背景 25 3.2 UDEC之行為模式 28 3.2.1塊體之組合律模式 28 3.2.2節理之組合律模式 31 3.3基本術語定義 34 3.4分析流程簡介 37 3.4.1分析架構及輸入指令說明 37 3.4.2實際分析步驟 40 3.4.3符號說明 41 3.5本研究利用UDEC建置之二維數值模式 42 3.5.1數值分析模式 42 3.5.2數值分析網格之建立 42 3.6 UDEC分析須輸入之參數 45 3.6.1完整岩石參數 45 3.6.2節理參數 49 第四章 一組規則節理岩坡於鐵塔不同加載組合之工程行為探討 52 4.1 利用二維軟體UDEC進行岩坡鐵塔破壞之相關案例研究 54 4.2一組規則節理岩坡成形之數值模式建置 56 4.2.1岩坡剖面形狀及尺寸 56 4.2.2本研究模擬之岩坡地質構造概述 57 4.2.3數值分析之測點佈設與命名 59 4.2.4岩坡鐵塔載重之數值模擬 60 4.3一組規則節理岩坡承受鐵塔垂直載重V之整體穩定分析 62 4.3.1三種不同載重組合 62 4.3.2單一傾倒破壞之發展歷程訂定 62 4.3.3坡體應力分布 65 4.3.4坡體位移趨勢 84 4.3.5岩坡5處不同測點之載重位移曲線(σd-δR)探討 92 4.4一組規則節理岩坡承受鐵塔垂直載重及側向水平載重之穩定分析 103 4.4.1岩坡承受鐵塔垂直載重及側向水平載重(V+HL、V+HR)之穩定分析 103 4.5.一組規則節理岩坡5處不同測點於不同載重組合下之載重位移曲線(σd-δR)探討 110 第五章 兩組規則節理岩坡於不同載重組合下之力學行為探討 124 5.1兩組規則節理岩坡承受鐵塔垂直載重之穩定分析 124 5.1.1坡體等壓線分布 125 5.1.2坡體位移趨勢圖 143 5.1.3岩坡5處不同測點之載重位移曲線(σd-δR)探討 152 5.2.兩組規則節理岩坡承受鐵塔垂直載重及側向水平載重之穩定分析 163 5.2.1岩坡承受鐵塔垂直載重及側向水平載重之穩定分析 163 5.3.兩組規則節理岩坡5處不同測點於不同載重組合下之載重位移曲線(σd-δR)探討 170 5.4.岩坡後載後於不同節理組數下之力學行為探討 184 第六章 結論與建議 191 6.1結論 191 6.2建議 193 參考文獻 194

1. Adhikary, D.P., Dyskin, A.V., Jewell, R.J., “A study of the mechanism of flexural toppling failure of rock slopes,” Rock Mechanics and Rock Engnineering, 30 (2), pp. 75-93, (1997).
2. Alzo’ubi, A.K., Martin, C.D., Cruden, D.M., “Influence of tensile strength on toppling failure in centrifuge tests,” International Journal of Rock Mechanics & Mining Sciences, 47, pp. 974-982, (2010).
3. Bandis, S., Lumsden, A.C. and Barton, N.R., “Foundamentals of Rock Joints Deformation.” International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstract, 20 (6), pp. 249-268, (1983).
4. Barton, N.R., Bandis, S. and Bakhtar, K. “Strength deformation and conductivity coupling of rock joints,” International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstract, 22, pp. 121-140, (1985).
5. Duncan, C.W., “Foundations on Rock,” Chap.3, pp. 43~76, E&FNSPON, (1992).
6. Goodman, R.E., “The Deformability of Joints Deformation of the In-Situ Modulus of Deformation of Rock,” ASTM, STP 477, pp. 174-196, (1970).
7. Goodman, R. E. “Introduction to Rock Mechanics,” 2nd Ed., Chap. 3, pp. 55~99, John Wiley&Sons, (1989).
8. Goodman, R. E. “Introduction to Rock Mechanics,” 2nd Ed., Chap. 6, pp. 101~140, John Wiley&Sons, (1989).

9. Goodman, R. E. “Introduction to Rock Mechanics,” 2nd Ed., Chap. 8, pp.293~339, John Wiley&Sons, (1989).
10. Goodman, R.E., and Kieffer, D.S., “Behavior of Rock in Slope,”J Geotechnical Eng (ASCE), 126 (8), pp. 675-684, (2000).
11. Hoek, E., and Bray, J. W., “Rock slope engineering,” 3rd Ed., Inst. of Mining and and Metallurgy, London, (1981).
12. Hoek, E. & Brown, E.T., “Underground Excavation in Rock,” Revised First Ed., pp.87-182, (1982).
13. Itasca Consulting Group. UDEC (Universal Distinct Element Code) Version 3.0. Minneapolis, MN, (1997).
14. Jaeger, J.C., “Shear failure of anisotropic rock,” Geo. Mag., 97, pp. 65-72, (1960).
15. Kimber, O.G., Allison, R.J., and Cox, N.J., “Mechanisms of failure and slope development in rock masses,” Trans. Inst. Br. Geogr., NS 23, pp. 353-370, (1998).
16. Kulitilake, P.H., Ucpirti, S.W., Wang, H.S., Radberg, G. Stephansson, O.,” Use of the Distinct Element Method to Perform Stress Analysis in Rock with Non-persistent Joints and to Study the Effect of Joint Geometry Parameters on the Strength and Deformability of Rock Masses,” Rock Mechanics and Rock Engineering 25(4), pp. 253-274, (1992).
17. Lama, R.D. and Vutukuri V.S., “Hand Book on Mechanical Properties of Rock,” Trans Tech Publications, Germany (1978).
18. Lambe, T.W., and Marr, W.A., “Stress Path Method: Second Edition,” Journal of the Geotechnical Engineering Division, ASCE, Vol.105, No. GT6, pp.727-738, (1979).
19. Nichol, S.L., Hungr, O., Evans, S.G., “Large-scale brittle and ductile toppling of rock slopes,” Canadian Geotechnical Journal, 39, pp. 773-788, (2002).
20. Sjöberg, J., “Analysis of large scale rock slopes,” Doctoral thesis, Department of Civil and Mining Engineering, Lulea University of Technology, Sweden, (1999).
21. Varnes, D.J., “Slope Movement Types and Processes,” Landslide analysis and control, edited by R.L. Schuster and R.J. Krizek. National Academy of Sciences, Washington DC, pp. 11-33, (1978).
22. Voight, B. & Pariseau, W.G., “Rockslides and Avalanches An Introduction,” A contribution to Rockslides and Avalanches 1 Natural Phenomena, ed., pp.1-67, (1978).
23. Yoshinaka, R., Yamabe, T., “Joint stiffness and the Deformation behavior of Discontinuous Rock,” Int.J.Rock. Mech.Min.Sci & Geomech.Abstr, 23 (1), pp. 19-28, (1986).
24. Zhang, J. H., Chen, Z. Y.,Wang, X. G., Han, L. B., “Stability of a toppling slope,” In: Proc., Int. Conference Centrifuge 98, vol. 1, Balkema, Rotterdam, pp. 621-626, (1998).
25. 方韻喬,「黏質邊坡與砂值邊坡之坡地建築力學行為探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2010)。
26. 林煒僑,「順向坡與斜交坡之降挖機制探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2002)。
27. 郭俊河,「順向坡開發之工程穩定性探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2004)。
28. 張嘉興,「岩坡穩定之數值分析探討-以溪阿公路岩坡為例」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2004)。
29. 陳譽中,「邊坡滑動評估方法探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2005)。
30. 陳俐穎,「節理分佈與傾角變化對基礎底面與其下方岩盤之應力與變形探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2010)。
31. 潘國樑,「工程地質通論」,五南出版社,第233-236頁,臺北,(2007)。
32. 邱昶瀚,「陡峭岩坡之傾倒機制探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2012)。
33. 劉又升,「岩坡傾倒破壞之工程行為探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2013)。
34. 楊昭男、陳文山,「花蓮、光復地區五萬分之一臺灣地質圖及說明」,經濟部中央地質調查所,臺北,(1992)。

QR CODE