簡易檢索 / 詳目顯示

研究生: Helmy Andamari Kwintanada
Helmy Andamari Kwintanada
論文名稱: 考量高頻率故障下之產線排程及維護最佳化問題
Integrated Production and Maintenance Scheduling Optimization for Frequent Machine Breakdown Consideration
指導教授: 楊朝龍
Chao-Lung Yang
口試委員: 林希偉
Shi-Woei Lin
王孔政
Kung-Jeng Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 94
中文關鍵詞: 更正性維護預防性維護混合整數非線性規劃與順序相關之生產配置最大概似估計
外文關鍵詞: Mathematical Modelling, Sequence-Dependent Setup
相關次數: 點閱:305下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • TABLE OF CONTENTS 摘 要 ii ABSTRACT iii ACKNOWLEDGMENT iv TABLE OF CONTENT iv LIST OF FIGURE vii LIST OF TABLE viii CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Problem Formulation 4 1.3 Assumptions and Problem Limitations 4 1.5 Research Framework 5 CHAPTER 2 LITERATURE REVIEW 7 2.1 Production Planning Objective Functions and Decision Variables 7 2.2 Uncertainty Parameter in Manufacturing Production 9 2.3 Methodology to Solve Production Scheduling and Uncertainty Parameter 10 CHAPTER 3 THEORITICAL BACKGROUND 13 3.1 Production Setup 13 3.2 Maintenance System 14 3.3 Maximum Likelihood Estimation 15 3.4 Weibull Distribution 16 3.5 Failure Metrics 17 3.6 Modeling Method 18 CHAPTER 4 RESEARCH METHODOLOGY 21 4.1 Research Object 21 4.2 Required Data 21 4.3 Research Tools 21 4.4 Research Stages 22 4.5 Problem Description 24 4.6 Mathematical Formulation 26 CHAPTER 5 RESULTS AND DISCUSSION 32 5.1 Expected Maintenance Downtime and Cost Calculation 32 5.1.1 Maximum Likelihood Estimation and Failure Metric Calculation 33 5.1.2 Expected Downtime Maintenance Calculation 34 5.1.3 Expected Maintenance Cost Calculation 37 5.2 Analysis Output and Scenario Comparison 39 5.2.1 Objective Function 40 5.2.2 Decision Variables 41 5.2.3 Scenario Comparison 45 5.3 Sensitivity Analysis 46 CHAPTER 6 CONCLUSION AND RECOMMENDATION 49 6.1 Conclusion 49 6.2 Recommendation for Future Research 49 REFERENCES 51 Appendix 1; Data Parameter 55 Appendix 2; Code 59 Appendix 3; Rstudio Output 64 Appendix 4; Downtime Calculation All Scenarios 65 Appendix 5; Lingo Output 69 Appendix 6; Best Scenario Decision Variables (Scenario 6) 73 Appendix 7; Sensitivity Analysis Running Output 77

    Angius, A., Colledani, M., Silipo, L., & Yemane, A. (2016). Impact of Preventive Maintenance on the Service Level of Multi-stage Manufacturing Systems with Degrading Machines. IFAC-PapersOnLine, 49(12), 568–573. https://doi.org/10.1016/j.ifacol.2016.07.696
    Boudjelida, A. (2019). On the robustness of joint production and maintenance scheduling in presence of uncertainties. Journal of Intelligent Manufacturing, 30(4), 1515–1530. https://doi.org/10.1007/s10845-017-1303-9
    Curcio, E., Amorim, P., Zhang, Q., & Almada-Lobo, B. (2018). Adaptation and approximate strategies for solving the lot-sizing and scheduling problem under multistage demand uncertainty. International Journal of Production Economics, 202(February 2017), 81–96. https://doi.org/10.1016/j.ijpe.2018.04.012
    Daniewski, K., Kosicka, E., & Mazurkiewicz, D. (2018). Analysis of the correctness of determination of the effectiveness of maintenance service actions. Management and Production Engineering Review, 9(2), 20–25. https://doi.org/10.24425/119522
    Ettaye, G., El Barkany, A., & El Khalfi, A. (2016). The integration of maintenance plans and production scheduling for a degradable multi-state system: A literature review. International Journal of Productivity and Quality Management, 19(1), 74–97. https://doi.org/10.1504/IJPQM.2016.078017
    Gholami-Zanjani, S. M., Hakimifar, M., Nazemi, N., & Jolai, F. (2017). Robust and Fuzzy Optimisation Models for a Flow shop Scheduling Problem with Sequence Dependent Setup Times: A real case study on a PCB assembly company. International Journal of Computer Integrated Manufacturing, 30(6), 552–563. https://doi.org/10.1080/0951192X.2016.1187293
    Gholamian, N., Mahdavi, I., & Tavakkoli-Moghaddam, R. (2016). Multi-objective multi-product multi-site aggregate production planning in a supply chain under uncertainty: Fuzzy multi-objective optimisation. International Journal of Computer Integrated Manufacturing, 29(2), 149–165. https://doi.org/10.1080/0951192X.2014.1002811
    Göttlich, S., & Knapp, S. (2020). Uncertainty quantification with risk measures in production planning. Journal of Mathematics in Industry, 10(1). https://doi.org/10.1186/s13362-020-00074-4
    Guimarães, L., Klabjan, D., & Almada-Lobo, B. (2014). Modeling lotsizing and scheduling problems with sequence dependent setups. European Journal of Operational Research, 239(3), 644–662. https://doi.org/10.1016/j.ejor.2014.05.018
    Han, J., Liu, Y., Luo, L., & Mao, M. (2020). Knowledge-Based Systems Integrated production planning and scheduling under uncertainty : A fuzzy bi-level decision-making approach. Knowledge-Based Systems, 201–202, 106056. https://doi.org/10.1016/j.knosys.2020.106056
    Hu, H., Ng, K. K. H., & Qin, Y. (2016). Robust Parallel Machine Scheduling Problem with Uncertainties and Sequence-Dependent Setup Time. Scientific Programming, 2016. https://doi.org/10.1155/2016/5127253
    Lakshamana, T., and Nikolovski, S., 2006, Reliability evaluation of composite system, Rajsons publication PVT. LTD., New Delhi.
    Liu, X., WANG, W., & PENG, R. (2015). An integrated production and delay-time based preventive maintenance planning model for a multi-product production system. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 17(2), 215–221. https://doi.org/10.17531/ein.2015.2.7
    Liu, Y. F., & Zhang, Q. S. (2018). Multi-objective production planning model for equipment manufacturing enterprises with multiple uncertainties in demand. Advances in Production Engineering And Management, 13(4), 429–441. https://doi.org/10.14743/apem2018.4.301
    Lu, Z., Cui, W., & Han, X. (2015). Computers & Industrial Engineering Integrated production and preventive maintenance scheduling for a single machine with failure uncertainty q. Computers & Industrial Engineering, 80, 236–244. https://doi.org/10.1016/j.cie.2014.12.017
    Manzini, M., & Urgo, M. (2015). Makespan estimation of a production process affected by uncertainty: Application on MTO production of NC machine tools. Journal of Manufacturing Systems, 37, 1–16. https://doi.org/10.1016/j.jmsy.2015.10.001
    Masruroh, N. A., Fauziah, H. A., & Sulistyo, S. R. (2020a). Integrated production scheduling and distribution allocation for multi-products considering sequence-dependent setups: a practical application. Production Engineering, 0123456789. https://doi.org/10.1007/s11740-020-00954-z
    Moghaddam, K. S., & Usher, J. S. (2011). Preventive maintenance and replacement scheduling for repairable and maintainable systems using dynamic programming. Computers and Industrial Engineering, 60(4), 654–665. https://doi.org/10.1016/j.cie.2010.12.021
    Naboureh, K., & Safari, E. (2016). Integrating the sequence dependent setup time open shop problem and preventive maintenance policies. Decision Science Letters, 5(4), 535–550. https://doi.org/10.5267/j.dsl.2016.4.002
    Naderi, B., Zandieh, M., & Fatemi Ghomi, S. M. T. (2009). Scheduling sequence-dependent setup time job shops with preventive maintenance. International Journal of Advanced Manufacturing Technology, 43(1–2), 170–181. https://doi.org/10.1007/s00170-008-1693-0
    Noshadravan, A., Gaustad, G., Kirchain, R., & Olivetti, E. (2017). Operational Strategies for Increasing Secondary Materials in Metals Production Under Uncertainty. Journal of Sustainable Metallurgy, 3(2), 350–361. https://doi.org/10.1007/s40831-016-0100-6
    Nourali, S., Imanipour, N., & Shahriari, M. R. (2012). A mathematical model for integrated process planning and scheduling in flexible assembly job shop environment with sequence dependent setup times. International Journal of Mathematical Analysis, 6(41–44), 2117–2132.
    Pariazar, M., & Sir, M. Y. (2018). A multi-objective approach for supply chain design considering disruptions impacting supply availability and quality. Computers and Industrial Engineering, 121(February 2017), 113–130. https://doi.org/10.1016/j.cie.2018.05.026
    Pascale, E., Freneaux, T., Sista, R., Sannino, P., Marmo, P., & Bouillaut, L. (2017). Application of the Weibull distribution for the optimization of maintenance policies of an electronic railway signaling system. Safety and Reliability - Theory and Applications - Proceedings of the 27th European Safety and Reliability Conference, ESREL 2017, 3409–3416. https://doi.org/10.1201/9781315210469-429
    Puchkova, A., McFarlane, D., Srinivasan, R., & Thorne, A. (2020). Resilient planning strategies to support disruption-tolerant production operations. International Journal of Production Economics, November 2019, 107614. https://doi.org/10.1016/j.ijpe.2020.107614
    Purohit, B. S., & Lad, B. K. (2016). Production and maintenance planning : an integrated approach under uncertainties. The International Journal of Advanced Manufacturing Technology, 3179–3191. https://doi.org/10.1007/s00170-016-8415-9
    Rabieh, M., Modarres, M., & Azar, A. (2018). Robust-fuzzy model for supplier selection under uncertainty: An application to the automobile industry. Scientia Iranica, 25(4), 2297–2311. https://doi.org/10.24200/sci.2017.4456
    Saif, Y., Rizwan, M., Almansoori, A., & Elkamel, A. (2019). Municipality solid waste supply chain optimization to power production under uncertainty. Computers and Chemical Engineering, 121, 338–353. https://doi.org/10.1016/j.compchemeng.2018.11.003
    Sakalli, U. S. (2017). Optimization of Production-Distribution Problem in Supply Chain Management under Stochastic and Fuzzy Uncertainties. Mathematical Problems in Engineering, 2017. https://doi.org/10.1155/2017/4389064
    Sgarbossa, F., Zennaro, I., Florian, E., & Persona, A. (2018). Impacts of weibull parameters estimation on preventive maintenance cost. IFAC-PapersOnLine, 51(11), 508–513. https://doi.org/10.1016/j.ifacol.2018.08.369
    Shen, L., Dauzère-Pérès, S., & Neufeld, J. S. (2018). Solving the flexible job shop scheduling problem with sequence-dependent setup times. European Journal of Operational Research, 265(2), 503–516. https://doi.org/10.1016/j.ejor.2017.08.021
    Shen, X. N., Han, Y., & Fu, J. Z. (2017). Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems. Soft Computing, 21(21), 6531–6554. https://doi.org/10.1007/s00500-016-2245-4
    Siswanto, A., & Kurniati, N. (2018). Determining optimal preventive maintenance interval for component of Well Barrier Element in an Oil & Gas Company. IOP Conference Series: Materials Science and Engineering, 337(1). https://doi.org/10.1088/1757-899X/337/1/012066
    Solari, H. S., Majidi, B., & Moazzami, M. (2019). Optimal estimation of weibull distribution parameters in order to provide preventive-corrective maintenance program for power transformers. Iranian Journal of Electrical and Electronic Engineering, 15(4), 536–544. https://doi.org/10.22068/IJEEE.15.4.536
    Talay, I., & Özdemir-Akyıldırım, Ö. (2019). Optimal procurement and production planning for multi-product multi-stage production under yield uncertainty. European Journal of Operational Research, 275(2), 536–551. https://doi.org/10.1016/j.ejor.2018.11.069
    Yang, F., Ren, H., & Hu, Z. (2019). Maximum likelihood estimation for three-parameter weibull distribution using evolutionary strategy. Mathematical Problems in Engineering, 2019. https://doi.org/10.1155/2019/6281781

    無法下載圖示 全文公開日期 2025/01/22 (校內網路)
    全文公開日期 2025/01/22 (校外網路)
    全文公開日期 2025/01/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE