簡易檢索 / 詳目顯示

研究生: 張鶴亭
Ho-Ting Chang
論文名稱: 應用類神經網路與訊號處理技術於低壓線路串聯電弧故障檢測
Application of Neural Network and Signal Processing Technology to Detection of Series Arc Fault on Low Voltage Power Line
指導教授: 吳啟瑞
Chi-Jui Wu
口試委員: 陳坤隆
Kun-Lung Chen
莊永松
Yung-Sung CHUANG
李尚懿
Shang-Yi Li
吳啟瑞
Chi-Jui Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 161
中文關鍵詞: 串聯電弧電弧檢測小波轉換傅立葉轉換帶通濾波器機率類神經網路Keras
外文關鍵詞: Series Arc, Arc Detection, Wavelet Transform, Fourier Transform, Bandpass Filter, Probabilistic Neural, Keras
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 依據國外調查指出,電弧事故為發生家庭電氣火災事件之主要原因之一,應要小心應對。無論在交流或直流電力系統中,當線路發生電弧故障時,若未能及時將故障排除,電弧產生的火花與高溫可能會對電路設備造成損害,甚至可能點燃附近的易燃物,引起火災。為設計出精準且迅速的電弧故障檢測技術,本論文建立交流串聯電弧與直流串聯電弧實驗平台,分別對於交流與直流線路進行電弧故障的實驗。首先使用高頻能量累積值、快速傅立葉轉換與帶通濾波器訊號處理技術,先得到電流特徵向量。再使用Python的軟體系統撰寫機率類神經網路(PNN)與Keras類神經網路,兩種檢測法,並與商用電弧斷路器(AFCI)與電弧故障偵測器(AFD)進行比較。經由測試後發現,當線路在正常運轉與發生電弧故障時,三種訊號處理方法結合兩種類神經檢測法皆具有正確的判斷結果。因PNN檢測法只需調整一種模組參數,使網路模型能在少量訓練次數下,達到省時且精準的檢測結果。


    According to some foreign investigations, arc faults are one of the main reasons of home electrical fires. They should be handled carefully. When an arc fault occurs on electric wire, sparks and high temperatures may cause damage to the electrical equipment. They even might ignite surrounding flammable materials and cause a fire if arcs are not eliminated in time. In order to design accurate and fast detection technology of arc faults, this thesis establishes a DC series and AC series arc fault experiment platform to conduct experiments on DC and AC load feeders, respectively. First of all, the experiment data is used to obtain the eigenvectors by the accumulation high frequency energy method, the fast Fourier transformation, and the bandpass filter. Thereafter, the probabilistic neural network (PNN) and the Keras neural network are two detection methods that are developed in Python. we compare these methods to the commercial arc fault circuit interrupters (AFCI) and the arc fault detectors (AFD) in detection. After test, it can be seen that two proposed methods combined with three signal processing methods can correctly judge results when electric wires are under normal operation and series arc fault. We only need to adjust one module parameter in the PNN detection method. Therefore, the network model can achieve timesaving in network training and accurate detection results.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景與動機 1.2 文獻探討 1.3 研究內容 1.4 章節敘述 第二章 串聯電弧故障特性與實驗設備 2.1 前言 2.2 電弧故障之類型與特性 2.2.1 電弧 2.2.2 交流電力系統電弧故障 2.2.3 交流串聯電弧故障之時頻特性 2.2.4 直流電力系統電弧故障 2.2.5 直流串聯電弧故障之時頻特性 2.2.6 交流串聯電弧與直流串聯電弧之比較 2.3 交流電弧與直流電弧之相關標準 2.3.1 NEC690.11與屋內配線裝置規則 2.3.2 UL 1699B 2.3.3 UL1699與NEC210.12 2.4 商用直流電弧故障保護裝置 2.5 商用交流電弧故障保護裝置 2.6 電弧故障實驗設備與實驗方法 2.6.1 實驗設備 2.6.2 交流電弧故障實驗方法 2.6.3 直流電弧故障實驗方法 2.7 小結 第三章 串聯電弧故障電流波形訊號處理 3.1 前言 3.2 訊號處理方法負載取樣標準 3.3 傅立葉轉換 3.3.1 離散傅立葉轉換 3.3.2 快速傅立葉轉換 3.3.3 串聯電弧故障線路電流之快速傅立葉分析 3.3.4 快速傅立葉轉換訊號處理方法流程 3.4 小波轉換 3.4.1 離散小波轉換 3.4.2 小波多層解析 3.4.3 串聯電弧故障線路電流之多層解析 3.5 高頻能量累積值 3.5.1 高頻能量累積訊號處理方法流程 3.6 帶通濾波器 3.6.1 原理 3.6.2 Butterworth帶通濾波器應用於交流串聯電弧分析 3.6.3 Butterworth帶通濾波器應用於直流串聯電弧分析 3.6.4 Butterworth帶通濾波器訊號處理方法流程 3.7 小結 第四章 使用類神經網路進行串聯電弧故障檢測 4.1 前言 4.2 類神經網路簡介 4.3 機率類神經網路檢測法 4.3.1 機率類神經網路分類原理 4.3.2 機率類神經網路訓練流程 4.3.3 機率類神經網路訓練模組參數 4.4 Keras類神經網路檢測法 4.4.1 Keras類神經網路訓練流程 4.4.2 Keras類神經網路訓練模組參數 4.5 類神經網路檢測法判斷流程 4.6 小結 第五章 低壓交流線路串聯電弧故障檢測結果 5.1 前言 5.2 交流線路供應各負載檢測結果 5.2.1 負載一:吹風機 5.2.2 負載二:17顆省電燈泡 5.2.3 負載三:吹風機與17顆省電燈泡 5.2.4 負載四:7顆省電燈泡與17顆省電燈泡 5.2.5 負載五:吹風機與電鍋 5.2.6 負載六:17顆省電燈泡與100uF電容 5.2.7 負載七:吹風機與100uF電容 5.2.8 負載八:混合負載 5.3 交流線路串聯電弧故障檢測結果正確率比較 5.3.1 三種訊號處理方法最佳正確率之平滑參數設定 5.3.2 類神網路檢測法測試結果比較 5.4 小結 第六章 低壓直流線路串聯電弧故障檢測結果 6.1 前言 6.2 直流線路供應電阻負載檢測檢果 6.2.1 不同電源電壓大小與線路電流大小 6.2.2 不同導線長度的影響 6.3 直流線路透過切換式逆變器接市電檢測結果 6.3.1 不同電源電壓大小與線路電流大小 6.3.2 不同導線長度的影響 6.4 直流線路透過線性式逆變器接交流電阻負載檢測結果 6.4.1 不同電源電壓大小與線路電流大小 6.4.2 不同導線長度的影響 6.5 直流線路串聯電弧故障檢測結果正確率比較 6.5.1 三種訊號處理方法最佳正確率之平滑參數設定 6.5.2 類神經網路檢測法測試結果比較 6.6 小結 第七章 結論與未來研究方向 7.1 結論 7.2 未來研究方向 參考文獻

    [1]內政部消防署,110年1至12月全國火災次數起火原因及火災損失統計表,https://www.nfa.gov.tw/cht/index.php。
    [2]UL 1699, STANDARD FOR SAFETY Arc-Fault Circuit-Interrupters, Underwriters Laboratories Inc, May, 2017.
    [3]R. Campbell, Home Electrical Fires, National Fire Protection Association (NFPA), February, 2022.
    [4]D. A. Dini, P. W. Brazis, and K.-H. Yen, “Development of arc-fault circuit-interrupter requirements for photovoltaic systems,” 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, pp. 1790-1794, June, 2011.
    [5]C. E. Restrepo, “Arc fault detection and discrimination methods,” Procceedings of the 53rd IEEE Holm Conference on Electrical Contacts, PA, USA, pp. 115-122, 2007
    [6]C. Xiaochen, W.Li, S. Qiangang, and M.Zhen, “AC arc fault detection based on mahalanobis distance,”2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad,Serbis, pp.DS3b. 13-1-DS3b. 13-6, 2012.
    [7]M. Dargatz and M. Fornage, Method and Apparatus for Detection and Control of DC Arc Faults, U.S. Patent 8179147, May 2012.
    [8]P. Muller, S. Tenbohlen, R. Maier, and M. Anheuser, “Characteristics of series and parallel low current arc faults in the time and frequency domain,” 2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts, Charleston, SC, USA, October, 2010.
    [9]J. Johnson, S. Kuszmaul, W. Bower, and D. Schoenwald, “Using PV module and line frequency response data to create robust arc fault detectors,” 2011 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, September, 2011.
    [10]Y. Zhao, X.Zhang, Y.Dong, and W. Li, “Characteristics analysis and detection of AC arv fault in SSPC based on wavelet transform,” 2016 IEEE Internation Conference on Aircraft Utility Systems(AUS), Beijing, China, pp. 476-481, 2016.
    [11]C. Hong, C. Xiaojuan, X. Wei, and W. Cong,“Short-time fourier transform based analysis to characterization of series arc fault,” 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, China, pp. 185-188, December, 2009.
    [12]P. Duan, L. Xu, X. Ding, C. Ning, and C. Duan, “An arc fault diagnostic method for low voltage lines using the difference of wavelet coefficients”, 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, pp. 401-405, June, 2014.
    [13]A. F. Ilman and Dzulkiflih, “Low voltage series arc fault detecting with discrete wavelet transform”, 2018 International Conference on Applied Engineering (ICAE), Batam, Indonesia, October, 2018.  
    [14]C.H .Kim, Y.H. Ko,S.H Byun,R. Aggarwal,and A. TJohns, “A novel fault-dection technique of high-impedance arcing faults in transmission lines using the wavelet transform,” IEEE Transactions on Power Delivery ,vol. 17, no.4, pp. 921-929, October, 2002.
    [15]R. Zhang and Z. Song, “Arc fault detection method based on signal energy distribution in frequency band,” 2012 Asia-Pacific Power and Energy Engineering Conference, Shanghai, China, pp. 1-4, March, 2012.
    [16]J. A. Momoh and R. Button, “Design and analysis of aerospace DC arcing faults using fast fourier transformation and artificial neural network,” 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491), Toronto, Ont., Canada, pp. 788-793, July, 2003.
    [17]史明哲,應用模糊理論與類神經網路於低壓線路電弧故障檢測,碩士學位論文,國立臺灣科技大學,臺北,2015。
    [18]徐誌遠,應用邏輯斯迴歸與訊號處理技術於串聯電弧故障檢測,碩士學位論文,國立臺灣科技大學,臺北,2021。
    [19]鄭家誠,應用電流失真功率於交流電路串聯電弧故障檢測與FPGA晶片設計,碩士學位論文,國立臺灣科技大學,臺北,2020。
    [20]蔡佳縉,應用支持向量機於直流串聯電弧故障檢測與FPGA晶片設計,碩士學位論文,國立臺灣科技大學,臺北,2019。
    [21]賴德欣,設計一直流串聯電弧故障偵測器於太陽光電系統之保護,碩士學位論文,國立台灣科技大學,臺北,2017。
    [22]曾元超,「防範住家電器火災的新技術」,台電月刊,第549期,第26-31頁,2008。
    [23]陳又琨,應用小波轉換於直流電力系統之串聯電弧故障偵測,碩士學位論文,國立臺灣科技大學,臺北,2014。
    [24]陳金龍,配電盤弧光閃絡保護與危險等級分析之研究,碩士學位論文,國立臺灣科技大學,臺北,2009。
    [25]G. S. Seo, H. Bae, B. H. Cho, and K.C. Lee, “Arc protection scheme for DC distribution systems with photovoltaic generation”, 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, November, 2012.
    [26]F. M. Uriarte, A. L. Gattozzi, J. D. Herbst, H. B. Estes, T. J. Hotz, A. Kwasinski, and R. E. Hebner, “A DC arc model for series faults in low voltage microgrids,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 2063-2070, Dec. 2012.
    [27]M. Naidu, T. J. Schoepf, and S. Gopalakrishnan, “Arc fault detection scheme for 42-V automotive DC networks using current shunt,” IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 633-639, May. 2006.
    [28]NEC Section 690.11 Arc Fault Cricuit Protection, National Electrical Code, 2011.  
    [29]「用戶用電設備裝置規則」,中華民國經濟部,三月,民國110年。
    [30]UL 1699B, Outline of Investigation for Photovoltaic(PV) Dc Arc-Fault Circuit Protection, Issue Number 1, Underwriters Laboratories Inc., April, 2011.
    [31]5SM Arc Fault Detection Unit for Photovoltaics, Siemens, April, 2015.
    [32]Firefighter Switch with Arc Fault Detection PVSEC-AF, E-T-A Engineering Technology, USA, pp. 1-6, 2015.
    [33]B. Novak, Implementing Arc Detection in Solar Applications: Achieving Compliance with the New UL 1699B Standard, Texas Instruments, August, 2012.
    [34]K. J. Lippert and T. Domitrovich, “AFCIs—from a standards perspective,” IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1478-1482, Mar-Apr. 2014.
    [35]G. D. Gregory, K. Wong, and R. F. Dvorak, "More about arc-fault circuit interrupters", IEEE Transactions on Industry Applications, vol. 40, no. 4, pp. 1006-1011, Jul-Aug. 2004.
    [36]A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. 3rd edition, Prentice Hall, 2010.
    [37]江國銘,以FPGA為設計晶片之電壓閃爍計算,碩士學位論文,國立臺灣科技大學,臺北,2011。
    [38]林銀議,信號與系統,五南圖書出版股份有限公司,2009。
    [39]劉鈺韋,運用小波轉換與神經網路檢測屋內低壓線路串聯電弧故障,博士學位論文,國立臺灣科技大學,臺北,2015。
    [40]Z. Wang, S. McConnell, R. S. Balog, J. Johnson, “Arc fault signal detection - fourier transformation vs. wavelet decomposition techniques using synthesized data”, 2014 40th IEEE Photovoltaic Specialists Conference, Denver, CO, USA, pp. 3239-3244, June, 2014.
    [41]K. Satood, Introduction to Data Compression, 2nd edition, Morgan Kaufmann, San Francisco, 2000.
    [42]R. M. Rao and A. S. Bopardikar, Wavelet Transfrom Introduction to Theory and Applications, Addison-Wesley, California, 1998.
    [43]W. G. Morsi and M. E. El-Hawary, “Reformulating three-phase power components definitions contained in the IEEE standard 1459-2000 using discrete wavelet transform,” IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1917-1925, Jul. 2007.
    [44]陳慶芳,心音訊號之分割與特徵擷取,碩士學位論文,義守大學,高雄,2012。
    [45]謝諾依,數字信號處理與濾波器設計,機械工業出版社,2018。
    [46]程佩青,數字信號處理教程(第五版),清華大學出版社,2011。
    [47]E. Matthes,Python 編程從入門到實踐 (袁國忠譯),人民郵電出版社,2016。 
    [48]葉怡成,類神經網路應用與實作,儒林圖書公司,2009。
    [49] D.F. Specht, “Probabilistic neural networks for classification, mapping, or associative memory”, IEEE International Conference on Neural Networks, vol. I, pp.525-532, July ,1998.
    [50]F. Zhang, Y. Wang, F. Chen, “Classification of building electrical system faults based on probabilistic neural networks”, 2016 Chinese Control and Decision Conference, Yinchuan, China, pp. 2043-2047, May, 2016.
    [51]韋宏軒,應用類神經網路於低壓交流線路串聯電弧故障檢測,碩士學位論文,國立臺灣科技大學,臺北,2021。

    無法下載圖示 全文公開日期 2024/07/12 (校內網路)
    全文公開日期 2024/07/12 (校外網路)
    全文公開日期 2024/07/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE