簡易檢索 / 詳目顯示

研究生: 柏勤學
Bramantyo - Bayu Aji
論文名稱: 雙頭噴霧熱裂解製備奈米結構銀顆粒
Synthesis of Nanostructured Silver Particles Using Two Atomized Spray Pyrolysis
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 段維新
Wei-Hsing Tuan
顏怡文
Yee-Wen Yen
梁元彰
Yuan-Chang Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 110
中文關鍵詞: 奈米結構銀顆粒雙頭噴霧熱裂解團聚Ostwald粗化
外文關鍵詞: Nanostructured silver particles, two atomized Spray pyrolysis, Aggregation, Ostwald ripening
相關次數: 點閱:261下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在過去幾十年中,已發展出製備奈米結構銀顆粒的幾種製程(例如,化學還原法、沉澱法與溶膠凝膠法),因噴霧熱裂解法可以大量製備不同尺寸(奈米與微米)且高純度的銀顆粒而成為有潛力的製程。大部分對於噴霧熱裂解的研究皆利用調整前驅物濃度達成尺寸的控制,並使用低濃度以得到小顆粒,且只有部分研究調查了造霧機的超聲波頻率與顆粒尺寸的關係,然而,此方法有著低產率且難以建立高頻率之造霧機設備的缺點,本研究建立了新的噴霧熱裂解技術以克服這些缺點。本實驗藉由雙頭噴霧熱裂解設備製備奈米結構的銀顆粒,尤其是使用醋酸銀與硝酸銀作為銀鹽類的前驅物並溶於去離子水中且不添加任何有機溶劑。藉由X光繞射儀、掃描式電子顯微鏡與穿透式電子顯微鏡分析所製備之銀粉體的物理性質,使用硝酸銀所製備的銀粉體有著比使用醋酸銀所製備的銀粉體更大的晶體尺寸,且晶體尺寸會隨著濃度增加而增加,掃描式電子顯微鏡與穿透式電子顯微鏡之結果證實了使用醋酸銀所製備的銀粉體,其形貌有著不規則的團聚形狀,同時,使用硝酸銀所製備的銀粉體有著球的形狀,且計算了奈米銀顆粒在銀粉體中所占的比例,此外,部分狀況發現團聚與Ostwald粗化的現象,因此,結果顯示雙頭噴霧熱裂解可以應用於合成奈米結構的銀顆粒。


In last decades, several techniques have been developed in order to synthesis nanostructured silver particles (e.g., chemical reduction, precipitation method, and so gel methods). Spray pyrolysis (SP) process has been known as a promising technique to produce silver particle in various size (nano and sub-micron) with high purity and mass production feasibility. Most of the previous studies in SP process directly propose size control by adjusting precursor concentration and suggested the low concentration to get small particle. Also there were only few studies investigated the correlation between ultrasound frequency of the atomizer and the particle size. However, these approaches have disadvantages such as low yield product and difficulty to built-up high frequency atomizer SP equipment. Here, we have developed a new SP technique to overcome these problems. In this study, nanostructured silver particles were synthesized via two atomized SP. In particular, two type silver acetate (AgA) and silver nitrate (AgN) were used as silver salt precursors and dissolved in DI-water without any organic solvent. The physical properties of silver powders were measured. The synthesized silver powders were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average crystallite size of silver powders prepared from AgN has larger crystallite size than AgA and increased with the increasing concentration. SEM and TEM results affirmed that the silver particles morphology prepared from AgA has irregular aggregate shape. Meanwhile, for silver particles prepared from AgN has spherical shape. Ratio of silver nano particles in silver powders was calculated. Furthermore, aggregation and Ostwald ripening phenomenon were identified for some cases. Therefore, these results suggest that this two atomized SP could be applied to synthesis nanostructured silver particles.

Table of Contents Abstract ii 摘要 iii Acknowledgements iv Table of Contents v Table of Figures viii List of the Tables xii Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Importance of silver nano particles 3 2.1.1 Silver properties 3 2.1.2 Silver nano particles in engineering applications 9 2.1.3 Silver nano particles in biomedical applications 12 2.2 Challenges of silver nano particles 13 2.2.1 Particle aggregation 13 2.2.2 Ostwald ripening 15 2.3 Synthesis of silver nano particles 16 2.3.1 Chemical reduction 16 2.3.2 Precipitation method 18 2.3.3 Sol-gel method 20 2.3.4 Hydrothermal synthesis 21 2.3.5 Spray Pyrolysis (SP) 22 2.4 Spray Pyrolysis (SP) equipment 26 2.4.1 Atomization of the droplets 27 2.4.2 Electrostatic deposition 29 2.5 Particles Formation Mechanism 30 2.5.1 One-particle-per-droplet 30 2.5.2 Gas-to-particle conversion 31 Chapter 3 Experimental Procedures 33 3.1 Powder preparation 33 3.2 Starting Materials 37 3.3 Experimental Equipments 37 3.4 Characterization 38 3.4.1 Thermogravimetry analysis 38 3.4.2 X-ray Diffraction 39 3.4.3 Scanning Electron Microscope 39 3.4.4 Transmission Electron Microscope 40 Chapter 4 Results and Discussion 41 4.1 Thermal Analysis 41 4.2 One atomized Spray Pyrolysis 44 4.2.1 Crystallography Structures 44 4.2.2 Particle size and Surface morphology 47 4.2.3 Particle Geometry 53 4.3 Two Atomized Spray Pyrolysis 60 4.3.1 Crystallography Structures 60 4.3.2 Particle Size and Surface Morphology 63 4.3.3 Particles geometry 73 4.4 General discussion 83 Chapter 5 Conclusions 85 Chapter 6 Future work 86 References 87

References

[1] S. Sarkar, A.D. Jana, S.K. Samanta, G. Mostafa, Facile synthesis of silver nano particles with highly efficient anti-microbial property, Polyhedron. 26 (2007) 4419–4426.
[2] E. Marambio-Jones, Catalina Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanoparticle Res. 12 (2010) 21.
[3] K. Yoshida, M. Tanagawa, M. Atsuta, Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials., J. Biomed. Mater. Res. 47 (1999) 516–522.
[4] S. Tarimala, N. Kothari, N. Abidi, E. Hequet, J. Fralick, L.L. Dai, New approach to antibacterial treatment of cotton fabric with silver nanoparticle–doped silica using sol–gel process, J. Appl. Polym. Sci. 101 (2006) 2938–2943.
[5] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, et al., The bactericidal effect of silver nanoparticles., Nanotechnology. 16 (2005) 2346–2353.
[6] L.L. Silver, Challenges of antibacterial discovery., Clin. Microbiol. Rev. 24 (2011) 71–109.
[7] S.C. Dev, C.S. Sivaramakrishnan, An indigenous alloy technology for a silver brazing, Mater. Des. 17 (1996) 75–78.
[8] T. Chung, J. Kim, J. Bang, B. Rhee, D. Nam, Microstructures of brazing zone between titanium alloy and stainless steel using various filler metals, Trans. Nonferrous Met. Soc. China. 22 (2012) s639–s644.
[9] R. Eluri, B.K. Paul, Silver nanoparticle-assisted diffusion brazing of 3003 Al alloy for microchannel applications, Mater. Des. 36 (2012) 13–23.
[10] K.S. Siow, Mechanical properties of nano-silver joints as die attach materials, J. Alloys Compd. 514 (2012) 6–19.
[11] J. Shen, W. Shan, Y. Zhang, J. Du, H. Xu, K. Fan, et al., Gas-phase selective oxidation of alcohols: In situ electrolytic nano-silver/zeolite film/copper grid catalyst, J. Catal. 237 (2006) 94–101.
[12] Z.Y. Li, H. Maeda, K. Kusakabe, S. Morooka, H. Anzai, S. Akiyama, Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method, J. Memb. Sci. 78 (1993) 247–254.
[13] M.H. Rashid, T.K. Mandal, Synthesis and Catalytic Application of Nanostructured Silver Dendrites., J. Phys. Chem. C. 111 (2007) 16750–16760.
[14] W. Lu, F. Liao, Y. Luo, G. Chang, X. Sun, Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection, Electrochim. Acta. 56 (2011) 2295–2298.
[15] X. Qin, Z. Miao, Y. Fang, D. Zhang, J. Ma, L. Zhang, et al., Preparation of dendritic nanostructures of silver and their characterization for electroreduction., Langmuir. 28 (2012) 5218–26.
[16] L. Mo, A.H. Wan, X. Zheng, C.T. Yeh, Selective production of hydrogen from partial oxidation of methanol over supported silver catalysts prepared by method of redox coprecipitation, Catal. Today. 148 (2010) 124–129.
[17] Z. Liu, Y. Su, K. Varahramyan, Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers, Thin Solid Films. 478 (2005) 275–279.
[18] B.-L. He, B. Dong, H.-L. Li, Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery, Electrochem. Commun. 9 (2007) 425–430.
[19] B.K. Park, D. Kim, S. Jeong, J. Moon, J.S. Kim, Direct writing of copper conductive patterns by ink-jet printing, Thin Solid Films. 515 (2007) 7706–7711.
[20] J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, et al., Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials, J. Mater. Chem. 20 (2010) 8446.
[21] X. Nie, H. Wang, J. Zou, Inkjet printing of silver citrate conductive ink on PET substrate, Appl. Surf. Sci. 261 (2012) 554–560.
[22] R.W. Gurney, N.F. Mott, The Theory of the Photolysis of Silver Bromide and the Photographic Latent Image, Proc. R. Soc. A Math. Phys. Eng. Sci. 164 (1938) 151–167.
[23] M. Cardona, Optical Properties of the Silver and Cuprous Halides, Phys. Rev. 129 (1963) 69–78.
[24] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B. 107 (2003) 668–677.
[25] B. Wiley, Y. Sun, Y. Xia, Synthesis of silver nanostructures with controlled shapes and properties., Acc. Chem. Res. 40 (2007) 1067–76.
[26] C. Wang, M. Luconi, A. Masi, L. Fernandez, Silver nanoparticles as optical sensors, in: D.P. Perez (Ed.), Silver Nanoparticles, Silver Nan, Intech, 2010: pp. 225–257.
[27] L. Balan, J.-P. Malval, R. Schneider, D. Burget, Silver nanoparticles: New synthesis, characterization and photophysical properties, Mater. Chem. Phys. 104 (2007) 417–421.
[28] J.S. Kang, J. Ryu, H.S. Kim, H.T. Hahn, Sintering of Inkjet-Printed Silver Nanoparticles at Room Temperature Using Intense Pulsed Light, J. Electron. Mater. 40 (2011) 2268–2277.
[29] Z. Zhang, B. Zhao, L. Hu, PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes, J. Solid State Chem. 121 (1996) 105–110.
[30] W.C. Bell, M.L. Myrick, Preparation and Characterization of Nanoscale Silver Colloids by Two Novel Synthetic Routes, J. Colloid Interface Sci. 242 (2001) 300–305.
[31] K.K. Caswell, C.M. Bender, C.J. Murphy, S. Street, S. Carolina, V. Di, et al., Seedless , Surfactantless Wet Chemical Synthesis of Silver Nanowires, Nano Latters. 35 (2003) 667–669.
[32] H. Wang, X. Qiao, J. Chen, S. Ding, Preparation of silver nanoparticles by chemical reduction method, Colloids Surfaces A Physicochem. Eng. Asp. 256 (2005) 111–115.
[33] A.G. Asta sileikaite, Igoris Prosycev, Judita Puiso, Algimantas Juraitis, Analysis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution, Mater. Sci. (Medziagotyra). Vol. 12 (2006) 287–291.
[34] M. Guzman, J. Dille, S. Godet, Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity., Proc. World Acad. Sci. Eng. Technol. 45 (2009) 357–364.
[35] K. Szczepanowicz, J. Stefanska, R.P. Socha, P. Warzynski, Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity, Physicochem Probl Min. Process. 45 (2010) 85–98.
[36] M. Husein, E. Rodil, J. Vera, Formation of Silver Chloride Nanoparticles in Microemulsions by Direct Precipitation with the Surfactant Counterion, Langmuir. 19 (2003) 8467–8474.
[37] Y. Dai, T. Deng, S. Jia, L. Jin, F. Lu, Preparation and characterization of fine silver powder with colloidal emulsion aphrons, J. Memb. Sci. 281 (2006) 685–691.
[38] N.H. Kim, J.-Y. Kim, K.J. Ihn, Preparation of silver nanoparticles having low melting temperature through a new synthetic process without solvent., J. Nanosci. Nanotechnol. 7 (2007) 3805–9.
[39] R.G. Lopez, P.Y. Reyes, J.A. Espinoza, M.E. Trevino, H. Saade, Synthesis of silver nanoparticles by precipitation in bicontinuous microemulsions, J. Nanomater. 2010 (2010).
[40] K.-S. Chou, Y.-C. Chang, L.-H. Chiu, Studies on the Continuous Precipitation of Silver Nanoparticles, Ind. Eng. Chem. Res. 51 (2012) 4905–4910.
[41] M. Zhu, P. Chen, W. Ma, B. Lei, M. Liu, Template-free synthesis of cube-like Ag/AgCl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts., ACS Appl. Mater. Interfaces. 4 (2012) 6386–92.
[42] G. De, A. Licciulli, C. Massaro, L. Tapfer, M. Catalano, G. Battaglin, et al., Silver nanocrystals in silica by sol-gel processing, J. Non. Cryst. Solids. 194 (1996) 225–234.
[43] P.W. Wu, B. Dunn, V. Doan, B.J. Schwartz, E. Yablonovitch, M. Yamane, Controlling the spontaneous precipitation of silver nanoparticles in sol-gel materials, J Sol-Gel Sci Techn. 19 (2000) 249–252.
[44] W. Li, S. Seal, E. Megan, J. Ramsdell, K. Scammon, G. Lelong, et al., Physical and optical properties of sol-gel nano-silver doped silica film on glass substrate as a function of heat-treatment temperature, J. Appl. Phys. 93 (2003) 9553–9561.
[45] M. Raffi, J.I. Akhter, M.M. Hasan, Effect of annealing temperature on Ag nano-composite synthesized by sol-gel, Mater. Chem. Phys. 99 (2006) 405–409.
[46] B. Akkopru, C. Durucan, Preparation and microstructure of sol-gel derived silver-doped silica, J. Sol-Gel Sci. Technol. 43 (2007) 227–236.
[47] V.I. Parvulescu, B. Cojocaru, V. Parvulescu, R. Richards, Z. Li, C. Cadigan, et al., Sol-gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior, J. Catal. 272 (2010) 92–100.
[48] R. Li, D.. Kim, K. Yu, H. Liang, C. Bai, S. Li, Study of fine silver powder from AgOH slurry by hydrothermal techniques, J. Mater. Process. Technol. 137 (2003) 55–59.
[49] D. Yu, V.W.-W. Yam, Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction., J. Phys. Chem. B. 109 (2005) 5497–5503.
[50] Z. Wang, J. Liu, X. Chen, J. Wan, Y. Qian, A simple hydrothermal route to large-scale synthesis of uniform silver nanowires., Chemistry. 11 (2004) 160–163.
[51] J. Xu, J. Hu, C. Peng, H. Liu, Y. Hu, A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant., J. Colloid Interface Sci. 298 (2006) 689–93.
[52] W.C. Zhang, X.L. Wu, H.T. Chen, Y.J. Gao, J. Zhu, G.S. Huang, et al., Self-organized formation of silver nanowires, nanocubes and bipyramids via a solvothermal method, Acta Mater. 56 (2008) 2508–2513.
[53] Z. Yang, H. Qian, H. Chen, J.N. Anker, One-pot hydrothermal synthesis of silver nanowires via citrate reduction., J. Colloid Interface Sci. 352 (2010) 285–91.
[54] K.C. Pingali, D.A. Rockstraw, S. Deng, Silver Nanoparticles from Ultrasonic Spray Pyrolysis of Aqueous Silver Nitrate, Aerosol Sci. Technol. 39 (2005) 1010–1014.
[55] H.-S. Kim, K.-H. Lee, S.-G. Kim, Growth of Monodisperse Silver Nanoparticles in Polymer Matrix by Spray Pyrolysis, Aerosol Sci. Technol. 40 (2006) 536–544.
[56] I.L. Validžić, V. Jokanović, D.P. Uskoković, J.M. Nedeljković, Formation of silver iodide particles from thermodynamically stable clusters using ultrasonic spray pyrolysis, J. Eur. Ceram. Soc. 27 (2007) 927–929.
[57] X. Shi, S. Wang, X. Duan, Q. Zhang, Synthesis of nano Ag powder by template and spray pyrolysis technology, Mater. Chem. Phys. 112 (2008) 1110–1113.
[58] H.Y. Koo, J.H. Yi, J.H. Kim, Y.N. Ko, Y.J. Hong, Y.C. Kang, et al., Size-controlled silver-glass composite powders with nanometer size prepared by flame spray pyrolysis, Powder Technol. 207 (2011) 362–369.
[59] S.-J. Shih, I.-C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis, Powder Technol. 237 (2013) 436–441.
[60] S. Glaus, G. Calzaferri, The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study, Photochem. Photobiol. Sci. 2 (2003) 398.
[61] D.A. Scott, Metallograpphy and Microstructre of Ancient and Historic metals, The Getty Conservation Institue, 1991.
[62] W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering An Integrated Approach, 4th ed., Jhon Wiley and Sons,Inc, 2012.
[63] A. Institute of Physics, Thermal conductivty of silver, in: Am. Inst. Phys. Handb., McGraw-Hill Bokk Co.inc, New, 1957: p. 49.
[64] B.W.C. Butterman, H.E. Hilliard, Silver: Open-File Report 2004-1251, Virgnia, 2005.
[65] D. Chen, X. Qiao, X. Qiu, J. Chen, Synthesis and electrical properties of uniform silver nanoparticles for electronic applications, J. Mater. Sci. 44 (2009) 1076–1081.
[66] H.M. Lee, M. Ge, B.R. Sahu, P. Tarakeshwar, K.S. Kim, Geometrical and Electronic Structures of Gold, Silver, and Gold−Silver Binary Clusters: Origins of Ductility of Gold and Gold−Silver Alloy Formation, J. Phys. Chem. B. 107 (2003) 9994–10005.
[67] J.E. Morris, Nanopackaging, Springer US, Boston, MA, 2008.
[68] Wikipedia, http://en.wikipedia.org/wiki/Ceramic_capacitor, Wikipedia. (2013).
[69] N. De Bruyne, Silver bearings, in: A. Butts (Ed.), Slilver-Economics, Metall. Use, R. E. Krieger Pub., princeton, 1967: pp. 446–454.
[70] L. Kvitek, A. Panacek, R. Prucek, J. Soukupova, M. Vanickova, M. Kolar, et al., Antibacterial activity and toxicity of silver – nanosilver versus ionic silver, J. Phys. Conf. Ser. 304 (2011) 012029.
[71] J. Ortega, T.T. Kodas, Control of particle morphology during multicomponent metal oxide powder generation by spray pyrolysis, J.Aerosol Sci. 23 (1992) 253–256.
[72] N.T.P. Phong, N.H. Minh, N.V.K. Thanh, D.M. Chien, Green synthesis of silver nanoparticles and silver colloidal solutions, J. Phys. Conf. Ser. 187 (2009) 012078.
[73] R. Tummala, Ceramic and GlassCeramic Packaging in the 1990s, J. Am. Ceram. Soc. 74 (1991) 895–908.
[74] A.R. Rodriguez, A.B. Wallace, US3004197 (A), 1961.
[75] C.-W. Chiu, P.-D. Hong, J.-J. Lin, Clay-mediated synthesis of silver nanoparticles exhibiting low-temperature melting., Langmuir. 27 (2011) 11690–6.
[76] K.-S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, et al., Thermal behavior of silver nanoparticles for low-temperature interconnect applications, J. Electron. Mater. 34 (2005) 168–175.
[77] S.H. Yoon, J.H. Lee, P.C. Lee, J. Do Nam, H.-C. Jung, Y.S. Oh, et al., Sintering and consolidation of silver nanoparticles printed on polyimide substrate films, Macromol. Res. 17 (2009) 568–574.
[78] M.J. Beier, B. Schimmoeller, T.W. Hansen, J.E.T. Andersen, S.E. Pratsinis, J.-D. Grunwaldt, Selective side-chain oxidation of alkyl aromatic compounds catalyzed by cerium modified silver catalysts, J. Mol. Catal. A Chem. 331 (2010) 40–49.
[79] M. Muniz-Miranda, B. Pergolese, A. Bigotto, A. Giusti, Stable and efficient silver substrates for SERS spectroscopy, J. Colloid Interface Sci. 314 (2007) 540–544.
[80] J.Z. Xu, Y. Zhang, G.X. Li, J.J. Zhu, An electrochemical biosensor constructed by nanosized silver particles doped sol-gel film, in: Mater. Sci. Eng. C, 2004: pp. 833–836.
[81] B.S. Atiyeh, M. Costagliola, S.N. Hayek, S.A. Dibo, Effect of silver on burn wound infection control and healing: review of the literature., Burns. 33 (2007) 139–148.
[82] H. Koga, T. Kitaoka, On-paper Synthesis of Silver Nanoparticles for Antibacterial Applications, in: Silver Nanoparticles, 2008: pp. 277–295.
[83] J.L. Clement, P.S. Jarrett, Antibacterial silver., Met. Based. Drugs. 1 (1994) 467–482.
[84] http://www.advancedmaterials.us/47MN-03-nano-silver price, (2014).
[85] M.Y. Lin, H.M. Lindsay, D.A. Witz, R.C. Ball, R. Klein, P. Meakin, Universality in colloid aggregation, Lett. to Nat. 3 (198AD) 360–362.
[86] C. Beenakker, J. Ross, Theory of Ostwald ripening for open systems, J. Chem. Phys. 94305 (1985) 0–4.
[87] I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J.Phys.Chem.solids. 19 (1961) 35–50.
[88] P. Taylor, Ostwald ripening in emulsions, Adv. Colloid Interface Sci. 75 (1998) 107–163.
[89] A. Dutta, A. Chengara, A.D. Nikolov, D.T. Wasan, K. Chen, B. Campbell, Destabilization of aerated food products: Effects of Ostwald ripening and gas diffusion, J. Food Eng. 62 (2004) 177–184.
[90] M. Yoshimura, K. Byrappa, Hydrothermal processing of materials: Past, present and future, in: J. Mater. Sci., 2008: pp. 2085–2103.
[91] G.L. Messing, S.-C. Zhang, G. V Jayanthi, Ceramic Powder Synthesis, J.Am.Ceram.Soc. 11 (1993) 2707–26.
[92] S.J. Shih, Y.Y. Wu, Y.J. Chou, K.B. Borisenko, Nanoscale control of composition in cerium and zirconium mixed oxide nanoparticles, Mater. Chem. Phys. 135 (2012) 749–754.
[93] T.C. Pluym, Q.H. Powell, A.S. Gurav, T.L. Ward, T.T. Kodas, L.M. Wang, et al., Solid silver particle production by spray pyrolysis, J.Aerosol Sci. 24 (1993) 383–392.
[94] R. Zheng, X. Guo, H. Fu, One-step, template-free route to silver porous hollow spheres and their optical property, Appl. Surf. Sci. 257 (2011) 2367–2370.
[95] D.S. Jung, H.Y. Koo, Y.C. Kang, Composite conducting powders with core–shell structure as the new concept of electrode material, Colloids Surfaces A Physicochem. Eng. Asp. 360 (2010) 69–73.
[96] H. Liu, science and engineering droplets : Fundamental and applications, in: Sci. Eng. Droplet, Noyes Publication, New york, 1981: pp. 19–116.
[97] W.T. Weng, Fundamentals of the atomization process, in: 1989: pp. 243–287.
[98] J.N. Antonevich, Ultrasonic Atomization of Liquids, Trans. IRE Prof. Gr. Ultrason. Eng. 6 (1959).
[99] Y.S. Chung, S. Bin Park, D.-W. Kang, Magnetically separable titania-coated nickel ferrite photocatalyst, Mater. Chem. Phys. 86 (2004) 375–381.
[100] S. Stopic, B. Friedrich, M. Schroeder, T.E. Weirich, Synthesis of TiO2 core/RuO2 shell particles using multistep ultrasonic spray pyrolysis, Mater. Res. Bull. 48 (2013) 3633–3635.
[101] A. Gurav, T. Kodas, T. Pluym, Y. Xiong, Aerosol Processing of Materials, Aerosol Sci. Technol. 19 (1993) 411–452.
[102] K. Okuyama, Preparation of micro-controlled particles usingaerosol process, J. Aerosol Sci. 22 (1991) S7–S10.
[103] S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Controlled Morphological Structure of Ceria Nanoparticles Prepared by Spray Pyrolysis, Procedia Eng. 36 (2012) 186–194.
[104] A. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978–982.
[105] A.J.C. Langford, J.I. and Wilson, Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size, J. Appl. Cryst. 11 (1978) 102–113.
[106] K. Pearson, Notes on the History of Correlation, Biometrika. 13 (2009) 25–45.
[107] V. Logvinenko, O. Polunina, Y. Mikhailov, K. Mikhailov, B. Bokhonov, Study of thermal decomposition of silver acetate, J. Therm. Anal. Calorim. 90 (2007) 813–816.
[108] M.D. Judd, B.A. Plunkett, M.I. Pope, The thermal decomposition of calcium, sodium, silver and copper(II) acetates, J. Therm. Anal. 6 (1974) 555–563.
[109] S. Yuvaraj, L. Fan-Yuan, C. Tsong-Huei, Y. Chuin-Tih, Thermal Decomposition of Metal Nitrates in Air and Hydrogen Environments, J. Phys. Chem. B. 107 (2003) 1044–1047.
[110] J. Masliyah, S. Bhattacharjee, Coagulation of Particles, Electrokinet. Colloid Transp. Phenom. (2005) 1–17.
[111] S.K. Friedlander, Smoke, dust, and haze: fundamentals of aerosol dynamics, 1st editio, Oxford University Press, 2000.

QR CODE