簡易檢索 / 詳目顯示

研究生: 劉易
Yi - Liu
論文名稱: 乙醇脫氫合成丁二烯之製程設計與模擬
Process Design and Simulation of 1,3-butadiene Production from Ethanol via Dehydrogenation Reaction
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 錢義隆
I-Lung Chien
周宜雄
Yi-Shyong Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 160
中文關鍵詞: 丁二烯乙醇法模擬
外文關鍵詞: Butadiene, Ethanol, Simulation
相關次數: 點閱:344下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

丁二烯是重要的有機化工原料,是合成橡膠的重要單體,亦可用來合成樹酯及許多化工產品。丁二烯的主要來源為輕油裂解後的碳四混合物,藉由萃取蒸餾提純取得。石油危機的爆發,進而影響到丁二烯的產能。另一種利用乙醇做為原料製備丁二烯的程序在二戰過後由於較不符合經濟效益而不被廣泛應用。然而,隨著頁岩氣(shale gas)開採技術的提升,以頁岩氣為進料生產乙烯的成本約比石油腦為進料成本低50 %,而乙烯可作為合成乙醇的原料,藉此提升乙醇法生成丁二烯製成的價值。
本研究利用Aspen Plus進行乙醇脫氫合成丁二烯的製程設計與模擬,乙醇先藉由脫氫反應生成中間產物乙醛,而在第二個反應器中乙醛與乙醇反應生成產物丁二烯。熱力學模型選用NRTL-HOC以及Henry component。設定的產能為200,000噸95 wt%的丁二烯產品。共完成四種不同的設計架構。
第四種設計架構為改善前三種架構中所發現的缺點,在經濟評估的結果亦能得到最小的年總成本(total annual cost, TAC),為本研究中最符合經濟效益的設計架構。


1,3-butadiene is a chemical compound that is frequently used as a monomer in the production of synthetic rubber. The most common technique for production of butadiene is extraction from the unsaturated hydrocarbon mixture produced from steam cracking. As the oil crisis appear, some other manufacture method need to be improved to replace the existing process. A method using ethanol as material to synthesize butadiene was used in United State during the World War II, since then it has not been widely research since it is less economical due to the high ethanol price. However, with the improvement of the drilling technology for the shale gas, using shale gas to synthesize ethanol can largely decrease the ethanol price, and hence make the ethanol-to-butadiene process more profitable.
This research focused on the design and simulation of such butadiene process using Aspen Plus. NRTL-HOC was chosen for thermodynamic model. The product capacity is set to be 200,000 ton/year (200 KTA), 95 wt %.
Four design structures had been built, and the fourth design structure would have the lowest TAC.

致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 C4成分萃取蒸餾法 [1-3] 2 1.2.2 合成法[2-3] 11 1.2.3 乙醇法 15 1.3 研究動機與目的 21 1.4 組織章節 22 第二章 熱力學與反應動力 23 2.1 前言 23 2.2 熱力學模式 24 2.3 熱力學參數確認 26 2.4 反應動力之探討與確認 35 第三章 丁二烯製程之概念性設計 40 3.1 前言 40 3.2 概念性設計說明 42 3.2.1 產物提純區 (Product purification section) 42 3.2.2 回收區 (Recovery section) 44 3.3 模擬步驟 48 3.4 第一種設計架構 51 3.4.1 設計概念 51 3.4.2 模擬設定與結果 54 3.4.3 第一種設計架構評估與分析 69 3.5 第二種設計架構 71 3.5.1 設計概念 71 3.5.2 模擬設定與結果 74 3.5.3 第二種設計架構評估與分析 84 3.6 第三種設計架構 86 3.6.1 設計概念 86 3.6.2 模擬設定與結果 88 3.6.3 第三種設計架構評估與分析 93 3.7 第四種設計架構 95 3.7.1 設計概念 95 3.7.2 模擬設定與結果 101 3.7.3 第四種設計架構評估與分析 105 3.8 四種架構之評估與分析 107 第四章 成本分析與靈敏度分析 109 4.1 前言 109 4.2 成本分析 109 4.2.1 操作成本 109 4.2.2 設備成本與年總成本 111 4.2.3 原物料成本 113 4.3 第四種設計架構靈敏度分析 115 4.3.1 C-AA蒸餾塔操作條件 115 4.3.2 蒸餾塔C-H2O進料位置靈敏度分析 118 結論 119 Reference 120 附錄 124

[1]http://hve.hep.com.cn/hep/plugin/gaozhi/sites/20146-00/20146-00_chapter03.pdf
[2] http://www.twwiki.com/wiki/丁二烯
[3] http://wenku.baidu.com/view/9090d4c389eb172ded63b7bb?fr=prin
[4] Robert F. Knott ; Arthur E. Handlos. Butadiene recovery process, US patent 4,038,156 (1977).
[5] Khabashesku, O. ; Butler, J. R. ; Wachowicz, D. Dehydration reactions of N-butene to butadiene, US Patent Application 0245568 A1 (2011).
[6] Bhattacharyya, S. K. ; Avasthi, B. N. One-step catalytic conversion of ethnol to butadiene in a fluidized bed, Department of Applied Chemistry, Indian Institute of Technology, Kharagpur, India (1963).
[7] Kvisle, S. ; Aguero, A. ; Sneeden, R.P.A. Transformation of ethanol into 1,3-butadiene overMagnesium Oxide/Silica Catalysts, Applied Catalysis, 1988,43,117-131.
[8] Murray, I. L. ; Marsh, J. L. ; Smith, S. P. Process for making butadiene, US patent 2,403,742 (1946).
[9] Burla, J. ; Fehnel, R ; Louise, P. ; Terpeluk, P. Two-step production of 1,3-butadiene from ethanol, University of Pennsylvania (2012).
[10] Tang, Y. T.; Huang, H. P.; Chien, I. L. Design of a Complete Ethyl Acetate Reactive Distillation System. J. of Chem. Eng. Japan 2003, 36, 1352-1363.
[11] Steele, K. ; Polling, B. E. ; Manley, D. B. Vapor Pressure for the System 1-Butene, Isobutane and 1,3-butadiene. J. of Chem. And Eng. Data 1976, 21, 4 ,399-403
[12] Laurance, D. R.; Swift, G. W. Vapor-Liquid Equilibria in Three Binary and Ternary Systems Composed of n-Butane, 1-Butene, and 1,3-Butadiene. J. Chem. Eng. Data, 1974, 19, 61
[13] Suska, J. Collect. Czech. Phase equilibria in binary systems containing acetaldehyde. Chem. Commun., 1979, 44, 1852
[14] Wagner, M.; Apelblat, A.; Tamir, A. Excess gibbs free energy in methanol + acetic acid and ethanol + acetic acid J. Chem. Thermodyn., 1980, 12, 181
[15] Borisova, I. A.; Erlykina, M. E. Deposited Doc., VINITI, 1982, 308, 308-82
[16] Orjuela, A.; Yanez, A. J.; Rossman, P. K.; Vu, D. T.; Miller, D. J.; Lira, C. T. Phase equilibria for reactive distillation of diethyl succinate. Part II. Systems diethyl succinate + ethyl acetate + water and diethyl succinate + acetic acid + water. Fluid Phase Equilib., 2010, 290, 68-74
[17] Orjuela, A.; Yanez, A. J.; Vu, D. T.; Miller, D. J.; Lira, C. T. Phase equilibria for reactive distillation of diethyl succinate Part I. System diethyl succinate + ethanol + water Fluid Phase Equilib., 2010, 290, 63-67
[18] Arce, A.; Rodil, E.; Soto, A. Can. J. Chem. Eng., 1999, 77, 1135
[19] Fried, V.; Capkova, A.; Suska, J. Collect. Czech. Liquid-vapor equilibrium: xxxi the systems acetaldehyde - acetic acid and acetaldehyde - vinyl acetate. Chem. Commun., 1963, 28, 3171
[20] Meehan, G. F.; Murphy, N. F. A new correlation for binary systems with an associating component. Chem. Eng. Sci., 1965, 20, 757-769
[21] Calvar, N.; Dominguez, A.; Tojo, J. Vapor liquid equilibria for the quaternary reactive system ethyl acetate + ethanol +water + acetic acid and some of the constituent binary systems at 101.3 kPa. Fluid Phase Equilib., 2005, 235, 215-222
[22] Xie, Q.; Wan, H.; Han, M.; Guan, G. Investigation on isobaric vapor liquid equilibrium for acetic acid +water +methyl ethyl ketone + isopropyl acetate. Fluid Phase Equilib., 2009, 280(1-2), 120-128
[23] Macarron, A. Determination of liquid-vapor equilibrium diagrams in binary systems with chemical reactions. Rev. R. Acad. Cienc. Exactas, Fis. Nat. Madrid, 1959, 53, 607-647
[24] Kay, W. B.; Donham, W. E. Liquid-Vapor Equilibrium in the Isobutyl Alcohol-Butanol, Methanol- Butanol, and Diethyl Ether-Butanol Systems. Chem. Eng. Sci., 1955, 4, 1-16
[25] Wong, K. F.; Eckert, C. A. Vapor-Liquid Equilibria of 1,2-Butadiene Systems. J. Chem. Eng. Data, 1969, 14, 432-6
[26] Rajedran, M.; Renganarayanan, S.; Srinivasan, D. Fluid Phase Equilib., 1991, 70, 65-106
[27] Ortega, J.; Pena, J. A.; de Alfonso, C. Isobaric vapor-liquid equilibria for the ethyl acetate systems with n-propanol and n-butanol. Rev. Latinoam. Ing. Quim. Quim. Apl., 1986, 16, 317
[28] Lladosa, E.; Monton, J. B. ; Burguet, M. C.; Munoz, R. Phase Equilibrium for the Esterification Reaction of Acetic Acid + Butan-1-ol at 101.3 kPa. J. Chem. Eng. Data, 2008, 53, 108-115
[29] Hartselle D. Kinsey; Theodore H. Kelly; Peter J. Ferrare, Cyclic Process For Making Butadiene, US patent 2,393,381 (1946)
[30] Murray, I. L. ; Marsh, J. L. ; Smith, S. P. Process for making butadiene, US patent 2,403,741 (1946)
[31] Murray, I. L.. Recovery method for cyclic vapor phase reaction products, US patent 2,249,847 (1941).
[32] Turton, R. ; Bailie, R. C. ; Whiting, W. B. ; Shaeiwitz, J. A.. Analysis, Synthesis, and Design of Chemical Processes, third edition, Pearson International Edition, 2009
[33]https://portal.sw.nat.gov.tw/APGA/GA01
[34]http://calvin249.wordpress.com/2013/08/22/頁岩器對台灣石化產業衝擊

QR CODE