簡易檢索 / 詳目顯示

研究生: 許雯雅
WEN-YA HSU
論文名稱: 腹版橫向鋼筋存在與否於低矮剪力牆往復載重行為研究
Cyclic behavior of RC squat walls with and without horizontal reinforcement
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 黃世建
李宏仁
陳沛清
鄭敏元
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 97
中文關鍵詞: 剪力牆低矮型
外文關鍵詞: shear wall, squat wall
相關次數: 點閱:127下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究根據過去試驗結果(Cheng 等學者, 2016、Wibowo, 2017),已測試之四組試體(CCC-N-1.5、H60、CCC-V-1.0、CCC-D-0.5)為基礎,規劃並測試另外兩組高長比分別為1.5及1.0,且無腹版橫向鋼筋之低矮剪力牆試體,目的欲探討低矮剪力牆之腹版橫向鋼筋存在與否於往復載重行為之影響。所有試體之面內剪應力需求(Vmpr)一致,即試體於牆底發展可能彎矩強度Mpr所對應的正規化剪應力值,約為10√f'c(psi)(0.75√f'c(MPa)。根據實驗結果所得之結論顯示,沒有橫向鋼筋的試體其最大正規化剪應力有降低的趨勢,高長比1.5及1.0的兩組試體具有腹版橫向鋼筋的試體有更好的變形能力,且改變橫向鋼筋量會影響試體最後的破壞模式。


According to specimen H60 (Cheng, et al.) and CCC-N-1.5、CCC-V-1.0、CCC-D-0.5 (Wibowo, 2017) were test in the past. This paper evaluates the effects of horizontal web reinforcement on cyclic behavior of RC squat wall using test results of three pairs of specimens. Two specimens were tested by the authors while the other four were adopted from the existing researches. Each specimen pair was designed with approximately the same design parameters, except that uniformly distributed horizontal web reinforcement was provided in one specimen only. Shear stress demand, evaluated based on the shear associated with the development of flexural strength at the base, was approximately 10√f'c(psi)(0.75√f'c(MPa). According to the experimental results, the normalized peak shear stress of the specimen without uniformly distributed horizontal web reinforcement has a decreasing trend. Test results showed that specimens of 1.5 and 1.0 aspect ratio with uniformly distributed horizontal web reinforcement exhibited the larger deformation capacity than the specimens without it. Changing the amount of horizontal web reinforcement will affect the final failure mode of the specimen.

摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第1章 序論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的及方法 3 1.4 研究內容架構 3 第2章 文獻回顧 5 2.1 過去實驗結果摘要 5 2.1.1 Maier (1992) 5 2.1.2 Salonikios, Kappos, Tegos, 與 Penelis (1999.2000) 6 2.1.3 Greifenhagen 與 Lestuzzi (2005) 8 2.1.4 Luna, Rivera, 與 Whittaker (2015) 9 2.1.5 Cheng, Hung, Lequesne, 與 Lepage等學者 (2016) 13 2.1.6 Wibowo (2017) 14 2.2 設計與分析方法 16 2.2.1 ACI 318-14低矮剪力牆設計 16 2.2.2 簡化軟化拉壓桿模型(Hwang等學者, 2001;Hwang與Lee, 2002;Hwang學者, 2017) 20 第3章 測試規劃 25 3.1 試體設計概述 25 3.2 試體尺寸與配筋 26 3.2.1 剪力牆主體 26 3.2.2 頂部混凝土塊 34 3.2.3 底部混凝土塊 35 3.3 試體製作 37 3.4 試驗配置 39 3.5 試體測試程序 43 3.6 試驗量測裝置 44 3.6.1 外部量測 44 3.6.2 鋼筋應變計 48 3.6.3 裂縫寬度量測 51 第4章 測試結果與討論 53 4.1 材料測試結果 53 4.1.1 混凝土 53 4.1.2 鋼筋 55 4.2 試體測試歷程 61 4.2.1 試體CCC-V-1.5 62 4.2.2 試體CCC-V-0.5 67 4.3 測試摘要與討論 72 4.3.1 載重與位移行為曲線 73 4.3.2 試體強度 75 4.3.3 變形能力 79 4.3.4 試體實際照片比較 80 第5章 結論 84 參考文獻 85

1. ACI Committee 318, 2014, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-14),” American Concrete Institute, Farmington Hills, Michigan, 519 pp.

2. Barda, F.; Hanson, J. M.; and Corley, W. G., 1977, “Shear Strength of Low-Rise Walls with Boundary Elements,” ACI Special Publications, Reinforced Concrete in Seismic Zones, SP-53-8, pp.149-202.

3. Cheng, M.–Y.; Hung, S.–H.; Lequesne, R. D.; and Lepage, A., 2016, “Earthquake-Resistant Squat Walls Reinforced with High Strength Steel,” ACI Structural Journal, V. 113, No.5, Sep.- Oct., pp. 1065-1076.

4. Greifenhagen, C., and Lestuzzi, P., 2005, “Static Cyclic Test On Lightly Reinforced Concrete Shear Wall,” Engineering Structures, V. 27, Jun., pp. 1703-1712.

5. Hwang, S. –J.; Fang, W.–H.; Lee, H.–J.; and Yu, H.–W., 2001, “Analytical Model for Predicting Shear Strength of Squat Wall,” Journal of Structural Engineering, ASCE, Vol. 127, No. 1, Jan., pp. 43-50.

6. Hwang, S. –J.; and Lee, H. –J., 2002, “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, ASCE, Vol. 128, No. 12, Dec., pp. 1519-1526

7. Hwang, S. –J.; Tsai, R. –J.; Lam W. –K.; and Moehle, J. P., 2017, “Simplification of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Regions,” ACI Structural Journal, V. 114, No. 5, Sep.- Oct., pp. 1239-1248.

8. Luna, B. N.; Rivera, J. P.; and Whittaker, A. S., 2015, “Seismic Behavior of Low-Aspect-Ratio Reinforced Concrete Shear Walls,” ACI Structural Journal, V. 112, No. 5, Sep.- Oct., pp. 593-604.

9. Maier, J., 1992, “Shear Wall Tests.”, Preliminary Proceedings, International Workshop on Concrete Shear in Earthquake, University of Houston, Texas, pp. 85-94.

10. Moehle, J. P.; Ghodsi, T.; Hooper, J. D.; Fields, D. C.; and Gedhada, R., 2011, “Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling Beams: A Guide for Practicing Engineers,” NEHRP Seismic Design Technical Brief No. 6, National Institute of Standards and Technology, U.S. Department of Commerce, NIST GCR 11-917-11, 37 pp.

11. Paulay, T.; Priestley, M. J. N.; and Synge, A. J., 1982 “Ductility in Earthquake Resisting Squat Shearwalls,” ACI Journal, V. 79, No. 4, Jul.-Aug., pp. 257-269.

12. Salonikios, N. T., Kappos, J. A., Tegos, A. I. and Penelis, G. G., 1999, “Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls: Design Basis and Test Results.”, ACI Structural Journal, V. 96, No. 4, Jul.-Aug., pp. 649-660.

13. Salonikios, N. T., Kappos, J. A., Tegos, A. I., Penelis, G. G., 2000, “Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls: Failure Modes, Strength and Deformation Analysis, and Design Implications.”, ACI Structural Journal, Vol. 97, No. 1, Jan.-Feb., pp. 132-142.

14. Wood, S. L., 1990, “Shear Strength of Low-Rise Reinforced Concrete Walls.” ACI Structural Journal, V. 87, No. 1, Jan.-Feb., pp. 99-107.

15. Wood, S. L., 1991, “Performance of Reinforced Concrete Buildings during the 1985 Chile Earthquake: Implications for the Design of Structural Walls,” Earthquake Spectra, EERI, V. 7, No. 4, pp. 607-638.

16. Wibowo, L. S. B., 2017 “Strength and Deformation Capacity of High-Shear Demand RC Squat Wall using High-Strength Materials,” Ph.D. Dissertation, Department of Civil and Construction Engineering, University of Science and Technology, Taipei, Taiwan.

QR CODE