簡易檢索 / 詳目顯示

研究生: 楊士承
SHIH-CHENG YANG
論文名稱: IEEE 802.15.4低速率無線個人區域網路下之增強型保證時槽配置機制
Enhanced GTS Allocation Scheme(EGAS) in IEEE 802.15.4 LR-WPAN
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 吳傳嘉
Chwan-Chia Wu
楊英魁
Ying-Kuei Yang
鍾添曜
Tein-Yaw Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 71
中文關鍵詞: 無線感測網路低速率無線個人區域網路
外文關鍵詞: wireless sensor network, low-rate wireless personal area network
相關次數: 點閱:259下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測網路(wireless sensor network; WSN)是由複數個感測節點彼此經由無線傳輸的方式來溝通,所形成的網路系統,由於是無線傳輸,所以比起有線網路來說,不需要額外考量佈線的成本。無線感測網路,具有低速率、低成本、低功耗的特性需求,IEEE 802.15.4 標準定義了無線感測網路實體層與媒體存取控制層的運作,正好符合上述之特性。
    在IEEE 802.15.4 標準中,可為較高的服務品質要求(quality of service; QoS)之裝置提供特定的傳輸區間,當裝置已經確定可在這個區間傳輸,便不需要再透過競爭的方式與其他裝置競爭傳輸通道,這個區間稱為免競爭週期(contention-free period; CFP),免競爭週期是由超碼框架構中之時槽作為傳輸單位,任一裝置被配置後的傳輸時間稱為保證時槽(guaranteed time slots; GTSs),一個保證時槽可能包含了一個或多個時槽以進行資料之傳輸;以上的傳輸方式,容易出現部分的時槽空間沒有使用的情況,而導致時槽空間的浪費,進而導致傳輸效率的降低,此種情形於超碼框級數(superframe order; SO)越大時越為明顯。
    為了解決上述時槽空間未使用而導致浪費的問題,本論文提出了增強型保證時槽配置機制(enhanced GTS allocation scheme; EGAS),本機制可以提升免競爭週期內時槽的使用率。而透過程式來模擬的結果,可以發現本論文所提出的機制,與IEEE 802.15.4 標準及過去被提出的方法的比較下,在免競爭週期頻寬之使用率、免競爭週期的有效產能、免競爭週期之佔用比率、免競爭週期之封包丟棄率均有顯著的改善。


    Wireless sensor network (WSN) is a network system formed by many sensors. The sensors communicate with each other by wireless transmission. In contrast with wire transmission, wiring is needless. WSN has some special requirements such as low rate, low cost, and low power. IEEE 802.15.4 standard defines WSN operating at physical and MAC layer, so the standard is just fit for the properties.
    In the IEEE 802.15.4, system can provide special time period for device with high quality of service (QoS) requirement. When a device is already decided to transmit data in this period, it will not have to content channel with others. The period is called contention-free period (CFP). CFP use the slot in superframe structure as transmission unit. These slots are called guaranteed time slots (GTSs). A GTSs can contain one or more slots to transmit data. The above transmission method brings that a portion of slot is unused, so it wastes space of slot and lowers transmission efficiency. When the value of superframe order (SO) increases, the situation becomes clearer.
    To solve the above-mentioned problem about waste of unused slot, we propose Enhanced GTS Allocation Scheme(EGAS) to promote utilization of GTSs in CFP. Through simulating by program, we compare our proposed scheme, IEEE 802.15.4 standard, and some previous schemes. Our proposed scheme has improvement on the others about average bandwidth utilization of CFP, CFP goodput, ratio of CFP, and drop ratio of CFP.

    中文摘要 iv 英文摘要 v 誌謝 vi 目次 vii 圖目次 ix 表目次 xi 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 2 1.3 章節概要 3 第二章 IEEE 802.15.4 標準概述 4 2.1 IEEE 802.15.4 標準簡介 4 2.2 IEEE 802.15.4標準的網路拓樸 5 2.3 IEEE 802.15.4標準的媒介存取控制副層(MAC sublayer)介紹 6 2.4 IEEE 802.15.4標準的資料傳輸模型 10 2.5 IEEE 802.15.4標準的訊框格式 14 2.6 IEEE 802.15.4保證時槽的配置(GTS allocation) 21 2.7 IEEE 802.15.4標準的相關研究 24 第三章 增強型保證時槽配置介紹 25 3.1 系統基本架構 25 3.2裝置流程說明 30 3.3協調者流程說明 34 3.4 範例說明 35 3.5 本方法的效益說明 38 第四章 系統模擬與結果 40 4.1 模擬環境與參數 40 4.2 效能評估項目 42 4.2.1 免競爭週期頻寬使用率 42 4.2.2免競爭週期的有效產能(CFP goodput) 43 4.2.3免競爭週期之佔用比率 44 4.2.4 免競爭週期之封包丟棄率 44 4.3 模擬結果分析與比較 45 4.3.1免競爭週期頻寬使用率的分析與比較 45 4.3.2免競爭週期的有效產能的分析與比較 47 4.3.3免競爭週期之佔用比率的分析與比較 50 4.3.4免競爭週期之封包丟棄率的分析與比較 52 第五章 結論及未來研究 55 參考文獻 56

    [1] M. Ulema, “Wireless Sensor Networks : Architectures, Protocols, and Management,” in Proceeding of Network Operations and Management Symposium’04, Vol. 1, p.931, April 2004.
    [2] M.A.M. Vieira and D.C.S. Junior, “ Survey on Wireless Sensor Network Devices,” in Proceeding of Emerging Technologies and Factory Automation’03, Vol.1, pp.537-544, September 2003.
    [3] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer Networks: The International Journal of Computer and Telecommunications Networking, vol. 52, no. 12, pp. 2292–2330, August 2008.
    [4] D. Puccinelli and M. Haenggi, “Wireless Sensor Networks: Applications and Challenges of Ubiquitous Sensing,” IEEE Circuit and Systems Magazine, Vol.5, No.3, pp. 19-31, 2005.
    [5] J. L. Wong, M. Potkonjak, “Search in sensor networks: challenges, techniques, and applications,” in Proceeding of Acoustics, Speech, and Signal Processing, Vol.4, pp. 3752-3755, May 2002.
    [6] N. A. Pantazis and D. D. Vergados, “A survey on power control issues in wireless sensor networks,” IEEE Communications Surveys & Tutorials, vol. 9, no. 4, pp. 86–107, 2007.
    [7] D. Steere, A. Baptista, D. McNamee, C. Pu, J. Walpole, “Research Challenges in Environmental Observation and Forecasting Systems,” in Proceeding of ACM/IEEE MOBICOM Conference, pp. 292-299, August 2000.
    [8] L.Q. Zhung, K. M. Goh, J. B. Zhang, “The Wireless Sensor Networks for Factory Automation: Issues and Challenges,” in Proceeding of Emerging Technologies & Factory Automation’07, pp. 141-148, September 2007.
    [9] H. Bai, M. Atiquzzaman, D. Lilja, “Wireless Sensor Network for Aircraft Health Monitoring,” in Proceeding of Broadhand Networks’04, pp.748-750, October 2004.
    [10] J. J. Evans, “Wireless sensor networks in electrical manufacturing,” in
    Proceeding of Electrical Insulation Conference and Electrical Manufacturing Expo, pp.460-465, October 2005.
    [11] J. A. Guierrez, “On the use of IEEE 802.15.4 to enable wireless sensor networks in building automation,” in Proceeding of IEEE PIMRC’04, Vol. 3, p.1869, September 2004.
    [12] X. Hu, J. Wang, Q. Yu, W. Liu and J. Qin, “A Wireless Sensor Network Based on ZigBee for Telemedicine Monitoring System,” in Proceeding of International Conference on Bioinformatics and Biomedical Engineering (ICBBE-08), pp.1367-1370, May 2008.
    [13] F. Ingelrest, G. Barrenetxea, G. Schaefer, M. Vetterli, O. Couach, and M.
    Parlange, “SensorScope: Application-specific sensor network for environmental monitoring,” ACM Transactions Sensor Network, Vol.6 pp.1-32, February 2010.
    [14] Tia Gao, C. Pesto, L. Selavo, Yin Chen, Jeong Gil Ko, Jong Hyun Lim,
    A. Terzis, A. Watt, J. Jeng, Bor-rong Chen, K. Lorincz, M. Welsh, “Wireless Medical Sensor Networks in Emergency Response:
    Implementation and Pilot Results,” Technologies for Homeland
    Security, IEEE Conference, pp.187-192, 2008.
    [15] Z. Liu, B. Wang, W. Yang, “Design and Deployment of Bridge Structural Health Monitoring System Based on Wireless Sensor Network,” 6th International communications networking and mobile computing, September 2010.
    [16] M. Bocca, E. I. Cosar, J. Salminen, L. M. Eriksson, “A Reconfigurable Wireless Sensor Network for Structural Health Monitoring,” in Proceeding 4th International Conference on Structural Health Monitoring on Intelligent Infrastructure(SHMII-4), pp.22-24, July 2009.
    [17] A. Triantafyllidis, V. Koutkias, I. Chouvarda and N. Maglaveras, “An open and reconfigurable wireless sensor network for pervasive health monitoring,” Pervasive Computing Technologies for Healthcare 2nd International Conference, p.112, February 2008.
    [18] IEEE 802.15.4 Working Group, “Standard for Part 15.4: Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low Rate Wireless Personal Area Networks(LR-WPANs),” ANSI/IEEE 802.15.4, October 2003.
    [19] IEEE 802.15.4 Working Group, “Standard for Part 15.4: Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low Rate Wireless Personal Area Networks(LR-WPANs),” ANSI/IEEE 802.15.4, September 2006.
    [20] C. K. Singh and A. Kumar, “Performance Evaluation of an IEEE 802.15.4 Sensor Network With a Star Topology,” Wireless Networks, Vol.14, August 2008.
    [21] Y. K. Huang, A. C. Pang, and H. N. Hung,“A comprehensive analysis of low-power operation for beacon-enabled IEEE 802.15.4 wireless networks,” IEEE Transactions on Wireless Communications, Vol.8, No.11, pp.5601-5611, 2009.
    [22] G. Lu, B. Krishnamachari, C. S. Raghavendra,“Performance Evaluation of the IEEE 802.15.4 MAC for Low-Rate Low-Power Wireless Networks,” in Proceeding of IEEE IPCCC, pp.701-706, April 2004.
    [23] Liang Cheng, A. G. Bourgeois, Xin Zhang “A new GTS allocation scheme for IEEE 802.15.4 networks with improved bandwidth utilization,” in Proceeding of Communications and Information Technologies, October 2007.
    [24] Yun-li Chou, “Efficient Mechanism for GTS Allocation(EMGA) in IEEE 802.15.4 LR-WPAN,” master thesis, NTUST, 2009.
    [25] Yong-Geun hong, Hyong-Jun Kim, Hee-Dong Park, Do-Hyeon Kim, “Adaptive GTS Allocation scheme to support QoS and multiple devices in 802.15.4,” in Advanced Communication Technology International Conference, Vol.3, pp.1697-1702, February 2009.

    QR CODE