簡易檢索 / 詳目顯示

研究生: 莊竣凱
Jiun-Kai Chuang
論文名稱: 寬頻漸變探針轉接及其在矩形波導功率分配器之應用
Broadband Tapered Probe Transitions and Its Applications to Power Dividers in Rectangular Waveguides
指導教授: 王蒼容
Chun-Long Wang
口試委員: 吳瑞北
Ruey-Beei Wu
曾昭雄
Chao-Hsiung Tseng
廖文照
Wen-Jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 85
中文關鍵詞: 威金森式功率分配器T型功率分配器矩形波導轉接微帶線直接饋入天線反對稱式漸變探針
外文關鍵詞: Wilkinson power dividers, T-junction power dividers, rectangular waveguide transition, microstrip line direct-fed antennas, antisymmetric tapered probe
相關次數: 點閱:265下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用不對稱漸變探針結合三角形耦合元件,來實現微型且寬頻的微帶線餽入天線。由於使用不對稱漸變探針,微帶線訊號可以直接餽入天線以形成微型的天線。除此之外,這個天線的反射係數小於–10 dB的頻寬涵蓋9.24 ~ 18.14 GHz,可謂相當的寬頻。再者,在這個頻帶內,天線的輻射場形都是全向性的。
為了實現微型且寬頻的微帶線至矩形波導轉接,我們把使用不對稱漸變探針的微帶線天線,直接放入矩形波導中。這個轉接的返回損耗小於15 dB的頻寬涵蓋8~13 GHz,超越X-band (8.2–12.4 GHz)的範圍。並且,在這個頻帶之內,其插入損耗皆小於0.22 dB。和使用漸變共面帶線的轉接以及使用漸變鰭線的轉接比較,這個轉接不但有較寬的15 dB頻寬,並且有較小的尺寸。
為了實現微型且寬頻的矩形波導功率分配器,我們整合三個使用不對稱漸變探針轉接與T型連接器。使用T型連接器結合不對稱漸變探針的矩形波導功率分配器有寬頻的響應。在8.48 ~ 12.04 GHz的頻率範圍內,其輸入埠的反射係數小於–15 dB,並且其輸出埠的傳輸係數約–3.2 dB。
為了將這個功率分配器升級為功率分配與結合器,我們使用威金森功率分配器來取代T型連接器。使用威金森功率分配器結合不對稱漸變探針的矩形波導功率分配與結合器,在X頻帶的範圍內,有低反射係數、等功率輸出且好隔離度的優點。在8.44 GHz ~ 12.6 GHz的頻率範圍內,其輸入埠的反射係數小於–15 dB,並且其輸出埠的反射係數小於–12.6 dB。除此之外,其輸出埠的傳輸係數約–3.3 dB,並且其輸出埠的隔離度小於–17.5 dB。
為了驗證以上所述之設計,我們實際製作了不對稱漸變探針微帶線餽入天線、微帶線至矩形波導背對背轉接電路、T型與威金森型矩形波導功率分配器並且量測,量測的結果與模擬的結果有很好的一致性,驗證了這些設計的正確性。


In this thesis, a compact and broadband microstrip-fed antenna using the antisymmetric tapered probe with triangular coupling element is proposed. The design is compact since the microstrip line signal could be directly fed into the antenna through the antisymmetric tapered probe. Besides, the proposed antenna has a broadband bandwidth in which the magnitude of the reflection coefficient is smaller than –10 dB, covering from 9.24 GHz to 18.14 GHz. Furthermore, the radiation pattern is omnidirectional among this frequency range.
In order to realize a compact and broadband microstrip line to rectangular waveguide transition, the microstrip-fed antenna using the antisymmetric tapered probe is placed directly into the rectangular waveguide. The fractional bandwidth of this transition for which the return loss is larger than 15dB covers from 8 to 13 GHz, encompassing the whole X-band (8.2–12.4 GHz). The corresponding IL in this frequency range is better than 0.22 dB. As compared with the transition using the tapered CPS probe and the transition using the short-end tapered probe, the 15-dB FBW is increased and the circuit size is reduced.
In order to realize a compact and broadband rectangular waveguide power divider, three transitions using the antisymmetric tapered probe are integrated with the T-junction. The rectangular waveguide power divider using the T-junction with antisymmetric tapered probe has a broadband response that the reflection coefficient of the input port is smaller than –15 dB and the transmission coefficients of the output ports are around –3.2 dB from 8.48 GHz to 12.04 GHz.
In order to advance this power divider as a power divider/combiner, the Wilkinson power divider is used to replace the T-junction. The rectangular waveguide power divider/combiner using the Wilkinson power divider with antisymmetric tapered probe has small reflection coefficients, equal power division, and good isolation for all ports among the X-band. The reflection coefficient of the input port is smaller than –15 dB and the reflection coefficients of the output ports are smaller than –12.6 dB from 8.44 GHz to 12.6 GHz, covering the whole X-band. Besides, the transmission coefficients of the output ports are around –3.3 dB and the isolation is smaller than –17.5 dB.
In order to verify the designs and simulation results mentioned above, circuits are fabricated and measured, including a microstrip-fed antenna using the antisymmetric tapered probe, back-to-back MSL to RWG transition, T-junction and Wilkinson RWG power dividers, where the measurement results are in good agreement with the simulation results.

CHAPTER 1 INTRODUCTION 1.1 MOTIVATION AND OBJECTIVE 1.2 LITERATURE SURVEY 1.2.1 Microstrip-Fed Antennas 1.2.2 Microstrip Line to Rectangular Waveguide Transitions 1.2.3 Rectangular Waveguide Power Dividers 1.3 CONTRIBUTION 1.4 DISCOURSE OVERVIEW CHAPTER 2 BROADBAND MICROSTRIP-FED ANTENNA USING ANTISYMMETRIC TAPERED PROBE WITH TRIANGULAR ELEMENT 2.1 TOPOLOGY DESCRIPTION 2.2 ANTENNA DESIGN AND ANALYSIS 2.2.1 Antisymmetric Probe Antenna 2.2.2 Antisymmetric Probe Antenna with Wide Probe Width 2.2.3 Antisymmetric Probe Antenna with Rectangular Element 2.2.4 Antisymmetric Probe Antenna with Triangular Element 2.3 EXPERIMENT AND MEASUREMENT 2.3.1 Reflection Coefficient 2.3.2 Antenna Gain and Radiation Pattern 2.4 SUMMARY CHAPTER 3 BROADBAND MICROSTRIP LINE TO RECTANGULAR WAVEGUIDE TRANSITION USING ANTISYMMETRIC TAPERED PROBE 3.1 TRANSITION TOPOLOGY 3.2 TRANSITION DESIGN AND ANALYSIS 3.2.1 MSL to RWG Transition Using Antisymmetric Tapered Probe 3.2.2 MSL to RWG Transition Using Wider Probe 3.2.3 MSL to RWG Transition Using Wider Probe with Rectangular Element 3.2.4 MSL to RWG Transition Using Wider Probe with Triangular Element 3.3 EXPERIMENT VERIFICATION 3.4 SUMMARY CHAPTER 4 BROADBAND RECTANGULAR WAVEGUIDE POWER DIVIDER/COMBINER USING MICROSTRIP-FED TAPERED PROBE 4.1 BROADBAND RECTANGULAR WAVEGUIDE POWER DIVIDER USING T-JUNCTION WITH MICROSTRIP-FED TAPERED PROBE 4.1.1 Modified MSL to RWG Transition Using Antisymmetric Tapered Probe 4.1.2 T-Junction Power Divider 4.1.3 Integration of MSL to RWG Transition and T-Junction 4.1.4 Experimental Verification 4.2 BROADBAND RECTANGULAR WAVEGUIDE POWER DIVIDER/COMBINER USING WILKINSON POWER DIVIDER WITH MICROSTRIP-FED TAPERED PROBE 4.2.1 Wilkinson Power Divider 4.2.2 Integration of MSL to RWG Transition and Wilkinson Power Divider 4.2.3 Experimental Verification 4.3 SUMMARY CONCLUSIONS REFERENCE PUBLICATION LIST

[1] D. M. Pozar, Microwave Engineering, 3rd ed, New York: Wiley 2005.
[2] Z. N. Chen and M. Y. W. Chia, "Center-fed microstrip patch antenna," IEEE Trans. Antennas Propag., vol. 51, no. 3, pp. 483–487, Mar. 2003.
[3] J.-W. Wu, J.-Y. Ke, C. F. Jou, and C.-J. Wang, "Microstrip-fed broadband circularly polarised monopole antenna," IET Microw. Antennas Propag., vol. 4, no. 4, pp. 518–525, Apr. 2010.
[4] A. Thabet, A. Z. El Dein, and A. Hassan, "Design of compact microstrip antenna by using new nano-composite materials," IEEE Int. Nanoelectronics Conf. (INEC), 2011, pp. 1–2.
[5] R. K. Raj, M. Joseph, C. K. Aanandan, K. Vasudevan, and P. Mohanan, "A new compact microstrip-fed dual-band coplanar antenna for WLAN applications," IEEE Trans. Antennas Propag., vol. 54, no. 12, pp. 3755–3762, Dec. 2006.
[6] L. Zhu, R. Fu, and K.-L. Wu, "A novel broadband microstrip-fed wide slot antenna with double rejection zeros," IEEE Antennas Wireless Propag. Lett., vol. 2, no. 1, pp. 194–196, 2003.
[7] M. N. Mahmoud and R. Baktur, "A dual band microstrip-fed slot antenna," IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1720–1724, May 2011.
[8] Y. Qian, W. R. Deal, N. Kaneda and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” Electron. Lett., vol. 34, no. 23, pp. 2194–2196, Nov. 1998.
[9] X. L. Bao, M. J. Ammann, and P. McEvoy, "Microstrip-fed wideband circularly polarized printed antenna," IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3150–3156, Oct. 2010.
[10] S.-Y. Chen and P. Hsu, “Broadband microstrip-fed modified quasi-Yagi antenna,” IEEE/ACES Int. Conf. Wireless Communications and Applied Computational Electromagn., 2005, pp. 208–211.
[11] Y. Coulibaly, T. A. Denidni, and H. Boutayeb, "Broadband microstrip-fed dielectric resonator antenna for X-band applications," IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 341–345, 2008.
[12] C. L. Mak, K. M. Luk, and K. F. Lee, "Microstrip line-fed L-strip patch antenna," IEE Proc. Microw. Antennas Propag., vol. 146, no. 4, pp. 282–284, Aug. 1999.
[13] K. Chung, J. Kim, and J. Choi, "Wideband microstrip-fed monopole antenna having frequency band-notch function," IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 766–768, Nov. 2005.
[14] T.-G. Ma and S.-K. Jeng, “A printed dipole antenna with tapered slot feed for ultra-wideband applications,” IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3833–3836, Nov. 2005.
[15] A. Z. Hood, T. Karacolak, and E. Topsakal, “A small antipodal Vivaldi antenna for ultrawide-band applications,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 656–660, 2008.
[16] G. Cappelletti, D. Caratelli, R. Cicchetti, and M. Simeoni, "A low-profile printed drop-shaped dipole antenna for wide-band wireless applications," IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3526–3535, Oct. 2011.
[17] H.-W. Yao, A. Abdelmonem, J.-F. Liang, and K. A. Zaki, “Analysis and design of microstrip-to-waveguide transitions,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp. 2371–2380, Dec. 1994.
[18] F. J. Villegas, D. I. Stones, and H. A. Hung, "A novel waveguide-to-microstrip transition for millimeter-wave module applications," IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 48–55, Jan. 1999.
[19] P. Herrero and J. Schoebel, "A WR-6 rectangular waveguide to microstrip transition and patch antenna at 140 GHz using low-cost solutions," in Proc. IEEE Radio and Wireless Symp., 2008, pp. 355–358.
[20] F. Poprawa, A. Ziroff, and F. Ellinger, "A novel approach for a periodic structure shielded microstrip line to rectangular waveguide transition," in Proc. IEEE MTT-S Int. Microw. Symp., 2007, pp. 1559–1562.
[21] J.-H. Choi, K. Tokuda, H. Ogawa, and Y.-H. Kim, "Gap-coupled patch-type waveguide-to-microstrip transition on single-layer dielectric substrate at V-band," Electron. Lett., vol. 40, no. 17, pp. 1067–1068, Aug. 2004.
[22] P. Wu, Z. Wang, Y. Zhang, S. Sun, and R. Xu, "Wideband waveguide to microstrip probe transition with LTCC technology," Electron. Lett., vol. 47, no. 1, pp. 43–44, Jan. 2011.
[23] N. Kaneda, Y. Qian, and T. Itoh, “A broad-band microstrip-to-waveguide transition using quasi-Yagi antenna,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2562–2567, Dec. 1999.
[24] Y. Lou, C. H. Chan, and Q. Xue, "An in-line waveguide-to-microstrip transition using radial-shaped probe," IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 311–313, May 2008.
[25] T.-H. Lin and R.-B. Wu, "A broadband microstrip-to-waveguide transition with tapered CPS probe," in Proc. 32nd Eur. Microw. Conf., Sep. 2002, pp. 1–4.
[26] J. H. C van Heuven, "A new integrated waveguide-microstrip transition," IEEE Trans. Microw. Theory Tech., vol. 24, no. 3, pp. 144–147, Dec. 1976.
[27] U. Rosenberg and M. Schneider, "Power splitting transition for circularly polarized feed networks," IEEE Microw. Guided Wave Lett., vol. 10, no. 8, pp. 307–309, Aug. 2000.
[28] K. C. Hwang, "Design and optimization of a broadband waveguide magic-T using a stepped conducting cone," IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 539–541, Sep. 2009.
[29] M. Mohammadi, F. H. Kashani, and J. Ghalibafan, "A compact planar monopulse combining network at W-band," in Proc. 5th IEEE GCC Conf. & Exhibition, 2009, pp. 1–5.
[30] C. D. Nantista and S. G. Tantawi, "A compact, planar, eight-port waveguide power divider/combiner: the cross potent superhybrid," IEEE Microw. Guided Wave Lett., vol. 10, no. 12, pp. 520–522, Dec. 2000.
[31] Z. Wang, Q. Wang, S. Zhang, and R. Liu, “Design of an economical compact broadband waveguide power divider,” in Proc. 4th IEEE Int. Conf. Circuits and Systems for Communications, 2008, pp. 330–332.
[32] X. Zhang, Q. Wang, A. Liao, and Y. Xiang, "Millimeter-wave integrated waveguide power dividers for power combiner and phased array applications," in Proc. Int. Conf. Microw. Millimeter Wave Tech., 2010, pp. 233–235.
[33] C. O. Lee, C. C. Shin, S. T. Kim, K. H. Ra, and Y. C. Lee, "The modified stepped waveguide T-junctions and the method of initial design," in Proc. Asia-Pacif. Microw. Conf., 2000, pp. 388–391.
[34] H. Chen, X. Xie, and R. Xu, "An ultra wide band power divider/combiner based on Y-structure waveguide," in Proc. Int. Conf. Microw. Millimeter Wave Tech., 2010, pp. 853–855.
[35] J.-B Lee, S.-H Lee, K. W. Lee, J. Kim, C. G. Kim, and Y. J. Yoon, "A new type of the matching structure of a H-plane T-junction for a high power system,” in Proc. IEEE AP-S Int. Symp., 2010, pp. 1–4.
[36] R. Bunger and F. Arndt, "Moment-method analysis of arbitrary 3-D metallic N-port waveguide structures," IEEE Trans. Microw. Theory Tech., vol. 48, no. 4, pp. 531–537, Apr. 2000.
[37] S. Yang and A. E. Fathy, "Synthesis of a compound T-junction for a two-way splitter with arbitrary power ratio," in Proc. IEEE MTT-S. Int. Microw. Symp. Dig., 2005, pp. 985–988.

QR CODE