簡易檢索 / 詳目顯示

研究生: 楊宏寬
Quan - Duong Hong
論文名稱: 假頻譜法結合直接施力邊界沉浸法熱傳分析之準確性研究
On accuracy of pseudospectral matrix element method coupled with direct-forcing immersed boundary method for mixed heat transfer
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 洪子倫
Tzyy-Lung Horng
林怡均
Yi-Jiun Peter LIN
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 65
中文關鍵詞: 假頻譜法直接施力邊界沉浸法強制對流熱傳自然對流熱傳
外文關鍵詞: Pseudospectral matrix element method (PSME), direct-forcing immersed boundary method (DFIB), forced convection, natural convection
相關次數: 點閱:354下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在建立一個假頻譜元素法結合直接施力邊界沉浸法來模擬強迫對流、自然對流熱傳的問題。本研究將被加熱處於高溫且等溫的圓柱利用直接施力邊界沉浸法建模,並使用假頻譜法離散統御方程式來模擬,因此此研究案例皆藉由高溫圓柱在低溫環境下的溫度差進行熱傳分析。在第一個案例中,本篇研究了當雷諾數為40時,流體經過加熱等溫圓柱的強迫對流熱傳分析。在第二個案例中,本篇研究了當瑞利數分別為 10^4、10^5 與 10^6 時,在一個方形封閉空間的中心放置加熱等溫圓柱的自然對流熱傳分析。利用基本的強迫與對流熱傳問題驗證了此方法所獲的的結果。


    A pseudospectral matrix element method (PSME) coupled with a direct-forcing immersed boundary method (DFIB) has been utilized to simulate forced convection and natural convection. The direct-forcing immersed boundary method is adopted to model the heated circular cylinder and the governing equations are discretized by the PSME method. Numerical calculations are performed for all of the cases induced by a temperature difference between a cold outer square cylinder and a hot inner circular cylinder. In the first case, forced convection over a heated circular cylinder with an
    isothermal surface was investigated with the Reynolds number Re = 40. The second case, natural convection in a square enclosure with a heated circular cylinder placed at the center of the square enclosure was carried out for three different Rayleigh numbers (Ra = 10^4, 10^5 and 10^6). The results obtained are validated using a number of benchmark forced and natural convection problems.

    Chinese Abstract Abstract Acknowledgements Contents Nomenclatures List of Tables List of Figures 1 INTRODUCTION 1.1 Motivation and background 1.2 Literature review 1.2.1 Pseudospectral matrix element method 1.2.2 Direct forcing immersed boundary method 1.3 Present study 1.4 Synopsis 2 NUMERICAL METHOD AND MATHEMATICAL MODELS 2.1 Governing equations 2.2 Pseudospectral matrix element method 2.3 Direct-forcing immersed boundary method 2.3.1 Calculation of virtual force 2.3.2 Numerical methods 2.4 Hardware and computational time 3 RESULTS AND DISCUSSION 3.1 Forced convection over a heated cylinder with an isothermal surface 3.2 Natural convection in a square enclosure with a heated circular cylinder 4 CONCLUSIONS AND FUTURE WORK 4.1 Conclusions 4.2 Future work BIBLIOGRAPHY

    [1] Chern, M.J., Borthwick, A.G.L., Taylor, R.E., 1999. A pseudospectralσ-transformation model of 2-D nonlinear waves.Journal of Fluids and Structures.13,607-630.
    [2] Boyd, J.P., 2000.Chebyshev and Fourier Spectral Methods. Dover publication, NewYork, USA.
    [3] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A., 1988.Spectral Methods inFluid Dynamics. Springer-Verlag, Berlin Germany.
    [4] Ku, H.C., Hatziavramidis, D., 1985. Solutions of the two-dimensional Navier-Stocksequations by Chebyshev expansion methods.Computers & Fluids.13, 99-113.
    [5] Hatziavramidis, D., Ku, H.C., 1985. A pseudospectral method for the solution ofthe two-dimensional Navier-Stokes equations in the primitive variable formulation.Journal of Computational Physics.67, 361-371.
    [6] Shitrit, S., Sidilkover, D., Gelfgat A., 2011. An algebraic multigrid solver for transonicflow problems.Journal of Computational Physics.230, 1707-1729.
    [7] Peskin, C.S, 1972. Flow patterns around heart valves: A numerical method.Journalof Computational Physics.10, 252-271.
    [8] Noor, D.Z., Chern, M.J., Horng, T.L., 2009. An immersed boundary method to solvefluid-solid interaction problems.Computational Mechanics.44, 447-453.
    [9] Hirt, C.W., Amsden, A.A., Cook, J.L., 1974. An arbitrary Lagrangian-Eulerian com-puting method for all flow speeds.Journal of Computational Physics.14, 227-253.[10] Chern, M.J., Noor, D.Z., Cook, Liao, C.B., Horng, T.L., 2015. Direct-forcing immersed boundary method for mixed heat transfer.Communications in ComputationalPhysics.18, 1072-1094.
    [11] Mohd. Yusof, J.M, 1996.Interaction of Massive Particles with Turbulence. PhD.Dissertation, Dept. of Mechanical and Aerospace Engineering, Cornell University,USA.
    [12] Paravento, F., Pourquie, M.J., Boersma, B.J., 2008. An immersed boundary methodfor complex flow and heat transfer.Flow, Turbulence and Combustion.80, 187-206.[13] Vega, A.P., Pacheco, J.R., Rodi ́c, T., 2007. A general scheme for the boundary con-ditions in convective and diffusive heat transfer with immersed boundary methods.Journal of Heat Transfer.129, 1506-1516.
    [14] Chern, M.J., Kuan, Y.H., Nugroho, G., Lu, G.T., Horng, T.L., 2014. Direct-forcingimmersed boundary modeling of vortex-induced vibration of a circular cylinder.Jour-nal of Wind Engineering and Industrial Aerodynamics.134, 109-121.
    [15] Tritton, D. J., 1959. Experiments on the flow past a circular cylinder at low Reynoldsnumbers.Journal of Fluid Mechanics.6, 547-567.
    [16] Dennis, S.C.R., Chang, G.Z, 1970. Numerical solutions for steady flow past a circularcylinder at Reynolds numbers up to 100.Journal of Fluid Mechanics.42, 471-489.
    [17] Lange, C.F., Durst, F., Breuer, M., 1998. Momentum and heat transfer from cylindersin laminar crossflow at 10^−4≤Re≤200.International Journal of Heat and MassTransfer.41, 3409-3430.
    [18] Soares, A.A., Ferreira, J.M., Chhabra, R. P., 2005. Flow and forced convection heattransfer in crossflow of non-Newtonian fluids over a circular cylinder.Industrial andEngineering Chemistry Research.44, 5815-5827.
    [19] Eckert, E.R.G., Soehngen, E., 1952. Distribution of heat transfer coefficients aroundcircular cylinder in cross flow at Reynolds number from 20 to 500,Trans. ASME.74, 343347.
    [20] Dias, A., Majumdar, S., 2002.Numerical Computation of Flow around a CircularCylinder. Technical Report, PS II Report, BITS Pilani.[21] Moukalled, F., Acharya, S., 1996. Natural convection in the annulus between con-centric horizontal circular and square cylinders.Journal of Thermophysics and HeatTransfer.10, 524-531.[22] Shu, C., Zhu, Y.D., 2002. Efficient computation of natural convection in a concentricannulus between an outer square cylinder and an inner circular cylinder.InternationalJournal for Numerical Methods in Fluids.38, 429-445.

    QR CODE