簡易檢索 / 詳目顯示

研究生: 王俊元
Chun-Yuan Wang
論文名稱: 利用去脂米糠水解液培養Yarrowia lipolytica Po1g生產油脂
Defatted Rice Bran Hydrolysate for Culturing Yarrowia lipolytica Po1g for Lipid Production
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 李振綱
Cheng-Kang Lee
Sury
Suryadi Ismadji
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 73
中文關鍵詞: 酸水解去脂米糠微生物油脂Yarrowia lipolytica Po1g
外文關鍵詞: Acid hydrolysis, defatted rice bran, microbial oil, Yarrowia lipolytica Po1g
相關次數: 點閱:219下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於近來對石化燃料需求的劇增和溫室氣體造成的溫室效應之議題促使人們尋找可替代性的能源。從油脂微生物獲取微生物油脂被視為是一個非常具有潛力的生質柴油來源。油脂微生物可以產生大量的油脂且其油脂成分與植物油很類似。
米糠為碾米過程中低價值之副產物且其全世界產量相當龐大。經去油後,去脂米糠仍含有大量的碳水化合物。有潛力成為微生物發酵之營養源。
本研究探討利用去脂米糠水解液來培養Yarrowia lipolytica Po1g以生產油脂之可行性。米糠利用索氏萃取除油步驟後,探討不同的酸濃度(1-4% v/v) 、水解溫度(60-120oC)和反應時間(1-8 h)對去脂米糠水解後水解液中醣類濃度之影響。以3%的稀硫酸溶液在90oC 下反應6小時可得最大醣含量。水解液接著進行去毒化步驟,目的是降低去脂米糠水解液中5-羥甲基糠醛和夫喃甲醛的含量以提高Yarrowia lipolytica Po1g之發酵效率。本研究所得之最佳生物量、油脂含量和油脂產率分別為10.75 g/L 、48.02%和1.72 g/L/day。


The increasing demands of petroleum-based fuel and concerns about greenhouse gas have triggered the search for alternative fuel. Recently, microbial oil from oleaginous microorganism is considered as a potential candidate for biodiesel production. Oleaginous microorganism possesses high content of lipid with similar fatty acid composition to that of vegetable oil.
Rice bran is an undervalued by-product from rice milling and is produced in large quantity worldwide. After the oil is being removed, a significant part of defatted rice bran is polysaccharide which can be considered as a potential source of sugars for microbial fermentation.
The purpose of this study is to investigate the possibility of utilizing the hydrolysate of defatted rice bran as an alternative substrate for culturing Yarrowia lipolytica for microbial oil production. After removing oil from rice bran by Soxhlet extraction, the bran is subjected to acid hydrolysis with various sulfuric acid concentrations (1-4%v/v), reaction times (1-8h) and reaction temperatures (60-120oC). The optimal conditions in terms of total sugar produced were found to be 3% sulfuric acid at 90 oC for 6 h. The hydrolysate was subsequently detoxified by neutralizing to decrease the amount of inhibitors such as 5-hydroxymethylfurfural (HMF) and furfural in the defatted rice bran hydrolysate to increase its potential as a medium for culturing Yarrowia lipolytica. Dry cell mass, lipid content and lipid productivity of Yarrowia lipolytica grown under optimum conditions were 10.75 g/L, 48.02% dry cell mass and 1.72 g/L/day, respectively.

中文摘要------------------------------------------------------------------------------------------I Abstract------------------------------------------------------------------------------------------II Acknowledgements-----------------------------------------------------------------------------III Contents------------------------------------------------------------------------------------------IV List of Figures----------------------------------------------------------------------------------VII List of Tables--------------------------------------------------------------------------------- --IX Chapter 1-----------------------------------------------------------------------------------------1 Introduction--------------------------------------------------------------------------------------1 1.1 Background study---------------------------------------------------------------------------1 1.2 Objective of this study----------------------------------------------------------------------3 Chapter 2------------------------------------------------------------------------------------------4 Literature review---------------------------------------------------------------------------------4 2.1 Rice bran--------------------------------------------------------------------------------------4 2.2 Rice bran lignocelluloses-------------------------------------------------------------------5 2.3 Rice bran starch------------------------------------------------------------------------------6 2.4 Acid Hydrolysis------------------------------------------------------------------------------6 2.5 Enzymatic Hydrolysis-----------------------------------------------------------------------7 2.6 Detoxification method----------------------------------------------------------------------9 2.6.1 Neutralization------------------------------------------------------------------------------9 2.6.2 Overliming--------------------------------------------------------------------------------10 2.6.3Active carbon treatment-----------------------------------------------------------------10 2.6.4 Ion exchange resins----------------------------------------------------------------------11 2.6.5 Enzymatic detoxification---------------------------------------------------------------11 2.6.6 Electrodialysis---------------------------------------------------------------------------12 2.7 Lipid extraction-----------------------------------------------------------------------------13 2.7.1 Supercritical fluid extraction-----------------------------------------------------------13 2.7.2 Solvent extraction------------------------------------------------------------------------14 2.7.3 Ultrasonic extraction--------------------------------------------------------------------14 2.7.4 Soxhelt extraction------------------------------------------------------------------------15 Chapter 3-----------------------------------------------------------------------------------------16 Methodology------------------------------------------------------------------------------------16 3.1 Chemicals-----------------------------------------------------------------------------------16 3.2 Apparatus and equipments----------------------------------------------------------------17 3.3. Conceptual framework of methodology------------------------------------------------19 3.4. Hydrolysis of defatted rice bran---------------------------------------------------------20 3.4.1. Raw material and pretreatment--------------------------------------------------------20 3.5. Detoxification of defatted rice bran hydrolysate--------------------------------------20 3.6. Fermentation-------------------------------------------------------------------------------21 3.6.1. Microorganism--------------------------------------------------------------------------21 3.6.2.Inoculum----------------------------------------------------------------------------------21 3.6.3 Microbial Fermentation-----------------------------------------------------------------21 3.7. Soxhlet extraction-------------------------------------------------------------------------22 3.8. Calibration curve of dry cell weight----------------------------------------------------22 3.9. Sugar analysis------------------------------------------------------------------------------23 3.10. Inhibitor analysis-------------------------------------------------------------------------24 3.11. Total reducing sugar---------------------------------------------------------------------24 3.12. Thin layer chromatography-------------------------------------------------------------25 3.13. Lipid analysis-----------------------------------------------------------------------------25 Chapter 4---------------------------------------------------------------------------------------- 27 Result and discussion--------------------------------------------------------------------------27 4.1 Effect of H2SO4 Concentration on Hydrolysis of DRB------------------------------27 4.2 Effect of Time on Acid Hydrolysis of DRB--------------------------------------------30 4.3 Effect of Detoxification on Composition of DRBH-----------------------------------33 4.4 Effect of DRBH on Growth and Lipid Content of Yarrowia lipolytica Po1g------35 4. 5 Effect of Sugar Concentrations on Biomass and Lipid Contents-------------------36 4.6 Effect of Nitrogen Source on Microbial Oil Production------------------------------38 4.7 Cellular Lipid Analysis--------------------------------------------------------------------40 Chapter 5-----------------------------------------------------------------------------------------44 Conclusion---------------------------------------------------------------------------------------44 References---------------------------------------------------------------------------------------45 Appendix-----------------------------------------------------------------------------------------55

Alvira, P., Tomas, P.E., Ballesteros, M., Negro, M.J. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresource Technology, 101(13), 4851-4861.
Agarwal, A.K. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33 (3), 233-271.
Angerbauer, C., Siebenhofer, M., Mittelbach, M., Guebitz, G.M. 2008. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology, 99(8), 3051-3056.
Adsul, M.G., Ghule, J.E., Shaikh, H., Singh, R., Bastawde, K.B., Gokhale, D.V., Varma,A.J.2005. Enzymatic hydrolysis of delignified bagasse polysaccharides. Carbohydate Polymers, 62(1), 6-10.
Abdullah, S., Abdul-Mudalip, S.K., Shaarani, S.M.D., Che Pi, N.A. 2010. Ultrasonic extraction of oil from Monopterus albus: Effects of different ultrasonic power, solvent volume and sonication time. Journal of Applied Sciences, 10(21), 2713-2716.
Ahmed, S., Singh, S., Pandey, A., Kanjilal, S., Prasad, R. 2006. Effects of various process parameters on the production of gamma-linolenic acid in submerged fermentation. Food Technology and Biotechnology, 44(2), 283-287.
Allen, C.A.W., Watts, K.C., Ackman, R.G., Pegg, M.J. 1999. Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel, 78(11), 1319-1326.
Bernardin, Jr. 1985. Experimental design and testing of adsorption and adsorbates. In: Slejko, F.L. (Ed.), Adsorption Technology: a step-by-step approach to process evaluation and application. New York, pp. 37–90 (Chapter 2).
Brunner, G. 2005. Supercritical fluids: technology and application to food processing. Journal of Food Engineering, 67(1-2), 21-33.
Barth, G., Gaillardin, C. 1996. Yarrowia lipolytica in: nonconventional yeasts in biotechnology in: A Handbook, (Ed.) K. Wolf, Ed., Springer. Berlin, Heidelberg, New York, pp. 313-388.
Carvalho, W., Silva, S.S., Converti, A., Vitolo, M., Felipe, M.G.A., Roberto, I.C., Silva, M.B., Manchilha, I.M. 2002. Used of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate. Applied Biochemistry and Biotechnology, 98-100(1), 489-496.
Campbell, C.J., Laherrere, J.H. 1998. The end of cheap oil. Scientific American, 278(3), 78-83.
Chandel, A.K., Kapoor, R.K., Singh, A., Kuhad, R.C. 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology, 98(10), 1947-1950.
Cheng, K.K., Cai, B.Y., Zhang, J.A., Ling, H.Z., Zhou, Y.J., Ge, J.P., Xu, J.M. 2008. Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochemical Engineering Journal, 38(1), 105-109.
Coughlan, M.P., Ljungdahl, L.G. 1988. Comparative biochemistry of fungal and bacterial cellulolytic enzyme system. In: Aubert, J.-P., Beguin, P., Millet, J. (Eds.), Biochemistry and Genetics of Cellulose Degradation, pp. 11–30.
Cheung, S., Anderson, B. 1996. Ethanol production from wastewater solids. Water Environment and Technology, 8 (5), 55-60.
Duff, S.J.B., Murray, W.D. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review, Bioresource Technology, 55(1), 1-33.
De, B. and Bhattacharya, D. 1998. Physical refining of rice bran oil in relation to degumming and dewaxing. Journal of the American Oil Chemists' Society, 75(11), 1683-1686.
Escobar, J.C., Lora, E.S., Venturini, O.J., Yáñez, E.E., Castillo, E.F., Almazan, O. 2009. Biofuels: Environment, technology and food security. Renewable and Sustainable Energy Reviews, 13(6-7), 1275-1287.
Eggeman, T., Elander, R.T. 2005. Process and economic analysis of pretreatment technologies. Bioresource Technology, 96(18), 2019-2025.
Fox, C.R., Kennedy, D.C. 1985. Conceptual design of adsorption systems. In: Slejko, F.L. (Ed.), Adsorption Technology: A Step-by- Step Approach to Process Evaluation and Application. New York, pp. 91–166 (Chapter 3).
Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos, A., Aggelis, G. 2009. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass and Bioenergy, 33(4), 573-580.
Gullison, R.E., Frumhoff, P.C., Canadell, J.G., Field, C.B., Nepstad, D.C., Hayhoe K.L. 2007. Tropical forests and climate policy. Science, 985.
Girio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Lukasik, R. 2010. Hemicelluloses for fuel ethanol: A review, Bioresource Technology, 101(13), 4775-4800
Gupta, R., Sharma, K.K., Kuhad, R.C. 2009. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresource Technology, 100(3), 1214-1220.
Hamelinck, C.N., Hooijdonk, G.V., Faaij, A.P.C. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 28(4), 384-410.
Hass, M.J., Foglia, T.A. 2005. Alternative feedstocks and technologies for biodiesel production. in: The Biodiesel Handbook, (Eds.) G. Knothe, J. Krahl, J.H. Van Jerpen, Vol. Ill AOCS Press. Champaign, pp. 42-61.
He, Y., Wang, S., Lai, K.K. 2010. Global economic activity and crude oil prices: A cointegration analysis. Energy Economics, 32(4), 868-876.
Huang, C., Zong, M.-h., Wu, H., Liu, Q. 2009. Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100(19), 4535-4538.
IRRI. 2008. World rice statistics. International Rice Research Institute.
Juliano, B.O. 1985. Rice : chemistry and technology. 2nd ed, American Association of Cereal Chemists. St. Paul, Min., USA.
Karimi, K., Kheradmandinia, S., Taherzadeh, M. J. 2006. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy, 30(13), 246-253.
Li, Y., Zhao, Z., Bai, F. 2007. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41(3), 312-317.
Leung D. 2001. Development of a clean biodiesel fuel in Hong Kong using recycled oil. Water Air Soil Pollution, 130(1),277-82.
Luque de Castro M.D., Priego-Capote. 2010. Soxhlet extraction: Past and present panacea. Journal of Chromatography A, 1217(16), 2383–2389
Laopaiboon, P., Thani, A., Leelavatcharamas, V., Laopaiboon, L. 2010. Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresource Technology, 101(3), 1036-1043.
Lynd, L.R. 1996. Overview and evaluation of fuel ethanol from cellulosic biomass:
technology, economics, the environment, and policy. Annu. Rev. Energy Environ, 21(1), 403-465.
Lenihan, P., Orozco, A., O'Neill, E., Ahmad, M. N. M., Rooney, D. W., Walker, G. M. 2010. Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156(2), 395-403.
Luh, B.S. 1991. Rice Production. 2nd ed. Van Nostrand Reinhold, New York.
Ma, F., Hanna, M.A. 1999. Biodiesel production: A review, Bioresource Technology, 70(1), 1-15.
Moreira, R.F.P.M., Jose, H.J., Soares, J.L. 2000. Isotermas de Adsorc~ao de Corantes Reativos Sobre Carv~ao Ativado. In: Pinto., L.T. (Ed.), 2o Encontro Brasileiro Sobre Adsorc~ao, Florian-opolis, SC, Brasil, pp. 85-91.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673-686.
Mussatto, S.I., Roberto, I.C. 2004. Alternatives for detoxification of dilutedacid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresource Technology, 93(1), 1-10.
Millati, R., Niklasson, C., Taherzadeh, M.J. 2002. Effect of pH, time and temperature of overliming on detoxification of dilute acid hydrolyzates for fermentation by Saccharomyces cerevisiae. Process Biochemistry, 38(4), 515-522.
Nilvebrant, N.O., Reimann, A., Larsson, S., Jonsson, L.J. 2001. Detoxification of lignocellulose hydrolysates with ion exchange resins. Applied Biochemistry and Biotechnology, 91–93(1), 35-49.
Neidig, H.A. 1997. Separating acid and neutral compounds by solvent extraction. Chemical Education Resources
Nakamura, Y., Sawada, T., Komatsu, A. 2002. Ethanol production from raw starch by a recombinant yeast having saccharification and fermentation activities. Journal of Chemical Technology and Biotechnology, 77(10), 1101-1106.
Persson, P., Andersson, J., Gorton, L., Larsson, S., Nilvebrant, N.O., Jonsson, L.J. 2002. Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. Journal of Agricultural and Food Chemistry, 50(19), 5318-5325.
Peng, X., Chen, H. 2008. Single cell oil production in solid-state fermentation by Microsphaeropsis Sp from steam-exploded wheat straw mixed with wheat bran. Bioresource Technology, 99(9), 3885-3889.
Papanikolaou, S., Komaitis, M., Aggelis, G. 2004. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresource Technology, 95(3), 287-291.
Papanikolaou, S., Galiotou-Panayotou, M., Fakas, S., Komaitis, M., Aggelis, G. 2007. Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. European Journal of Lipid Science and Technology, 109(11), 1060-1070.
Palmarola-Adrados, B., Choteborsk, P., Galbe, M., Zacchi, G. (2005). Ethanol production from non-starch carbohydrates of wheat bran. Bioresource Technology, 96(7), 843-850.
Purwadi, R., Niklasson, C., Taherzadeh, M.J. 2004. Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. Journal of Biotechnology, 114(1-2), 187-198.
Rajam, L., Soban Kumar, D., Sundaresan, A., Arumughan, C. 2005. A novel process for physically refining rice bran oil through simultaneous degumming and dewaxing. Journal of the American Oil Chemists' Society, 82(3), 213-220.
Ratledge, C., Wynn, J.P. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, Vol. Volume 51, Academic Press, pp. 1-44.
Ranatunga, T.D., Jervis, J., Helm, R.F., McMillan, J.D., Wooley, R.J. 2000. The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enzyme and Microbial Technology, 27(3-5), 240-247.
Ratledge, C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86(11), 807-815.
Ratledge, C. 2005. Single cell oils for the 21st century. in: Single cell oils, (Eds.) Z. Cohen, Ratledge. C., AOCS Press. Champaign, IL, pp. 1-20.
Ratledge, C., Wynn, J.P. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, Vol. Volume 51, Academic Press, pp. 1-44.
Rupcic, J., Blagovic, B., Maric, V. 1996. Cell lipids of the Candida lipolytica yeast grown on methanol. Journal of Chromatography A, 755(1), 75-80.
Rodriguez-Chong, A., Ramirez, J.A., Garrote, G., Vazquez, M. 2004. Hydrolysis of
sugarcane bagasse using nitric acid: a kinetic assessment. Journal of Food
Engineering, 61(12), 143-152.
Irakoze, P.C., Haihua Zhan,Q.L., Zhou Kexue and Huiming Zhou. 2010. Optimization
of ultrasonic extraction of polysaccharides from Chinese Malted Sorghum
using response surface methodology Pakistan. Journal of Nutrition, 9(4),
336-342.
Indira, T. N., Hemavathy, J., Khatoon, S., Gopala Krishna, A. G., & Bhattacharya, S. (2000). Water degumming of rice bran oil: a response surface approach. Journal of Food Engineering, 43(2), 83-90.
Smedes, F. and Askland, T. K. 1999. Revisiting the development of the Bligh and Dyer total lipid determination method. Marine Pollution Bulletin, 38(3), 193-201.
Sassner, P., Martensson, C., Galbe, M., Zacchi, G. 2008. Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresource Technology, 99(1), 137-145.
Saunders, R.M. 1990. The properties of rice bran as a food stuff. Cereal Foods World,
35(7), 632-662.
Sagnak, R., Kapdan, I. K., & Kargi, F. Dark fermentation of acid hydrolyzed ground wheat starch for bio-hydrogen production by periodic feeding and effluent removal. International Journal of Hydrogen Energy, 35(18), 9630-9636.
Sivers, M.V., Zacchi, G. 1995. A techno-economical comparison of three processes for the production of ethanol from pine. Bioresource Technology, 51(1), 43-52.
Tanaka, T., Hoshina, M., Tanabe, S., Sakai, K., Ohtsubo, S., Taniguchi, M. 2006. Production of d-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresource Technology, 97(2), 211-217.
Vandana, V., Karuna, M., Vijayalakshmi, P., Prasad, R. 2001. A simple method to enrich phospholipid content in commercial soybean lecithin. Journal of the American Oil Chemists' Society, 78(5), 555-556.
Vicente, G., Martínez, M., Aracil, J. 2004. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, 92(3), 297-305.
Veith,G.D., Kiwus, L.M. (1977). An exhaustive steam-distillation and solvent-extraction unit for pesticides and industrial chemicals. Bulletin of Environmental Contamination and Toxicology, 17(6), 631-636.
Wu, S., Zhao, X., Shen, H., Wang, Q., Zhao, Z.K. 2011. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresource Technology, 102(2), 1803-1807.
Xiong, W., Li, X., Xiang, J., Wu, Q. 2008 High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol , 78(1), 29-36.
Xue, F., Miao, J., Zhang, X., Luo, H., Tan, T. 2008. Studies on lipid production by Rhodotorula Glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresource Technology, 99(13), 5923-5927.
Ye, S., Cheng, J.J. 2005. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology, 96(14), 1599-606
Zhao, J., Xia, L. 2010. Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochemical Engineering Journal, 49(1), 28-32.
Zhu, L.Y., Zong, M.H., Wu, H. 2008. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technology, 99(16), 7881-7885.

Zheng, L., Hang, L., Ji, Y., Wang, X., Tan, T. 2010. Fermentative production of l-lactic acid from hydrolysate of wheat bran by Lactobacillus rhamnosus. Biochemical Engineering Journal, 49(1), 138-142
Xue, F., Miao, J., Zhang, X., Luo, H., Tan, T. 2008. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresource Technology, 99(13), 5923-5927.

QR CODE