簡易檢索 / 詳目顯示

研究生: 游易霖
Yi-Lin Yu
論文名稱: 光纖光柵之光纖模組研發及應用
FBG-Based Optical Modules:Investigations and Lightwave Applications
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 李三良
San-Liang Lee
徐世祥
Shih-Hsiang Hsu
黃振發
Jen-Fa Huang
王立康
Li-karn Wang
林恭如
Gong-Ru Lin
呂海涵
Hai-Han Lu
陳南光
Nan-Kuang Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 光纖光柵光纖雷射光纖放大器被動光纖網路
外文關鍵詞: Fiber grating, fiber Laser, fiber amplifier, WDM-PON
相關次數: 點閱:305下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

第一部分我們研製摻鐿光纖雷射,包含使用不同長度的摻鐿光纖、各種反射率的光纖光柵及不同的型態的光纖反射鏡來針對摻鐿雷射的輸出特性做探討。另外,我們自行研製的可調式光纖光柵嵌入共振腔之後,可使其成為可調式摻鐿光纖雷射。接著,我們經由前述的最佳化參數來研製近單頻的摻鐿光纖雷射。所使用的方式是多個子環形共振腔來抑制旁模的產生,最後我們使用了三個不同長度的子環形共振腔來達到近單頻的摻鐿光纖雷射。第二部分我們提出兩種不同的 C+L 頻帶光纖放大器﹔一為摻鉺光纖放大器,另外一種為混和型光纖放大器。兩種放大器擁有各自的優點,我們將擷取各自之優點來做研製。我們在此部分所提出的架構皆為平行式光纖放大器﹔也就是在放大的過程中,C 頻帶的訊號與L 頻帶的訊號光路徑是互相獨立的,並且搭配泵激功率分享的概念來達到增益平坦的目的。在放大器的部分,我們也提出了另一種設計﹔使用不同反射率的光纖光柵以及若干長度的色散補償光纖來達到不僅是增益等化,也能夠可以解決在長距離傳輸中所遇到的色散問題。在此部分,我們也將所提出的光纖放大器做實際的系統傳輸,在不同的設定下傳輸50、70、100 km 的距離下,功率償付值皆能低於1 dB。第三部分,首先,我們提出了一種適用於被動光纖網路的遠程泵激光纖放大器。雖然被動光纖網路侷限在傳輸距離30km 內,但是損耗仍會影響傳輸之品質,進而限制了傳輸的容量。所以第三部分的前段,我們將探討遠程泵激光纖放大器的設計,並且使其達到寬頻帶放大並擁有增益平坦優點。在第三部分的後段,我們將針對一般的傳輸設計做改良﹔我們將利用一種可重構之光纖模組將兩條不同的光纖做組合,並且重新分配所有訊號光的路徑,達到光訊號交換的目的。由於所籤入的可重構之光纖模組也有相對的元件損耗,故我們也將遠程泵激光纖放大器設計在模組中,使其免於光纖損耗等問題所困擾。最後在第七章的部分,針對本論文所達成的具體成果作結論,並且對未來研究方向提出若干建議。


This thesis is studied the fiber grating, and apply it for different optical fiber laser and module. The dissertation consists of three parts.
In first part, we develop Ytterbium doped fiber laser. We change the parameter
to optimize the characteristic of output laser, including using different length of Ytterbium doped fiber, various reflectivity fiber grating and different types of fiber mirrors. Additional, a homemade tunable fiber grating inserted can make the fiber laser achieved widely tunable range. Also, we develop near single frequency fiber laser based on the aforementioned parameters. We use sub-ring cavity to filter the side-mode. Finally, we use three different length of sub-ring cavity to achieve the near single frequency Ytterbium doped fiber laser.
The second part of this dissertation, two types of bidirectional fiber amplifier
are proposed and experimentally demonstrated, including EDFA and hybrid fiber
amplifier in C+L band. We design them with parallel type structure and use concept of pumping reuse and pumping sharing to solve the gain flatten issue. Furthermore, we propose and demonstrated a hybrid fiber amplifier in bridge-type scheme. It is composed of a C-band erbium-doped fiber amplifier (EDFA) and an L-band Raman fiber amplifier (RFA) using double-pass dispersion compensators in a loop-back scheme. Dispersion slope mismatch is compensated precisely for all C+L band channels by writing fiber Bragg gratings (FBGs) at appropriate locations. Therefore, the gain and dispersion issue can be easily solved. To verify the lightwave system with our proposed fiber amplifier, we also measure the BER performances with 50, 70, 100 km transmission fiber in this part.
In the third part, we propose a remote pumped Erbium doped fiber amplifier
for wavelength-division-multiplexing passive-optical-network. A high reflectivity pump reflector using three cascading fiber Bragg gratings (FBGs) is designed to reflect the residual pump power for L band amplification. Using the remote pumped bidirectional fiber amplifier, the power penalty is only 0.82 dB after 10 Gb/s, 24 km bi-directional transmission. A reconfigurable optical network based on fiber Bragg gratings is also proposed. 10 Gb/s per channel over 20 km fiber span is used to verify the metro-network-range system performance. A remote pumped EDFA is used in this module to compensate the loss of transmission fiber and components. The power penalty is less than 1 dB when compares to the back to back transmission.

Content Chinese Abstract ................................................................................................................i English Abstract .............................................................................................................. iii Contents ....................................................................................................................... v Abbreviation ..................................................................................................................... viii List of Figures ....................................................................................................................... x List of Tables .................................................................................................................... xv Chapter 1 Introduction .......................................................................................................................... 1 1-1 Overview ................................................................................................................... 1 1-2 Motivation ................................................................................................................. 2 1-3 Prior works overview ............................................................................................... 3 1-4 Organization of the Thesis ...................................................................................... 5 Chapter 2 Fiber Bragg grating ............................................................................................................ 8 2-1 Introduction ............................................................................................................... 8 2-2 FBGs Fabrication ................................................................................................... 11 2-3 Theory ...................................................................................................................... 15 2-4 Tunable Fiber Bragg Grating ................................................................................ 17 2-4-1 Fabrication and Setup ........................................................................... 17 2-4-2 Fiber Sensor Based on FBG .................................................................. 21 2-5 Long Period Fiber Grating ..................................................................................... 23 2-5-1 Introduction .......................................................................................... 23 2-5-2 LPFG Fabrication .................................................................................. 24 2-6 Summary ................................................................................................................. 26 Chapter 3 FBG Based Linear Cavity Ytterbium Doped Fiber Laser ................................ 27 3-1 Theory and Fabrication.......................................................................................... 27 3-1-1 Theory of Cavity ................................................................................... 27 3-1-2 Fabrication ............................................................................................. 28 vii 3-2 Ytterbium Doped Fiber.......................................................................................... 31 3-2-1 Energy Level ......................................................................................... 31 3-2-2 Thermal Effect ....................................................................................... 32 3-3 Linear Cavity Ytterbium Doped Fiber Laser ...................................................... 35 3-3-1 Experimental Setup ................................................................................. 35 3-3-2 Results and Discussion ........................................................................... 36 3-3-3 Tunable Fiber Laser ............................................................................... 39 3-4 Near Single Longitudinal Mode Fiber Laser ................................................. 41 3-5 Summary ........................................................................................................ 45 Chapter 4 Optical Fiber Amplifiers in Long Haul Optical Network.................................. 46 4-1 Theory of Fiber Amplifier ..................................................................................... 46 4-1-1 Erbium Doped Fiber Amplifier ............................................................ 46 4-1-2 Raman Fiber Amplifier ......................................................................... 49 4-2 C+L Band Erbium Doped Fiber Amplifier (Scheme 1) .................................... 55 4-2-1 Experimental Setup ............................................................................... 55 4-2-2 Results and Discussion .......................................................................... 57 4-3 C+L Band Hybrid Fiber Amplifier (Scheme 2) .................................................. 59 4-3-1 Experimental Setup ............................................................................... 59 4-3-2 Results and Discussion .......................................................................... 60 4-4 Summary ................................................................................................................. 64 Chapter 5 Multifunction C+L Band Hybrid Fiber Amplifiers ............................................. 65 5-1 Overview ................................................................................................................. 65 5-2 Experimental Setup and Theory ........................................................................... 66 5-3 Simulation and Experimental Results ................................................................. 68 5-4 Summary ................................................................................................................. 75 Chapter 6 Applications of optical module ..................................................................................... 76 6-1 Introduction ............................................................................................................. 76 6-2 Remotely Pump EDFA Based WDM-PON ........................................................ 78 viii 6-2-1 Experimental Setup ............................................................................... 78 6-2-2 Results and Discussion .......................................................................... 80 6-2-3 Gain Flatten .......................................................................................... 84 6-3 Wavelength Reconfigurable Module of Optical Networks ............................... 87 6-3-1 Experimental Setup ............................................................................... 87 6-3-2 Results and Discussion .......................................................................... 91 6-4 Summary ................................................................................................................. 94 Chapter 7 Conclusions .......................................................................................................................... 96 7-1 Achievements and Works Summary ................................................................... 96 7-2 Suggestion for Future Work ................................................................................. 99 References .......................................................................................................................... 100 Publication List ................................................................................................................ 107

References
[1] 廖顯奎譯,光纖通訊,高立圖書有限公司,第一版,台北,2005。
[2] Hecht, J., Understanding Fiber Optics, Pearson Education, Inc., Upper Saddle
River, New Jersey, 2006.
[3] Sumiyoshi, T., Sekita, H., Arai, T., Sato, S., Ishihara, M., and Kikuchi, M.,
“High-Power Continuous-Wave 3- and 2-μm Cascade Ho3+:ZBLAN Fiber Laser
and Its Medical Applications” , IEEE Selected Topics in Quantum Electronics,
Vol. 5, No.4, pp. 936-943 (1999)
[4] Choi, H. Y., Park, K. S., Park, S. J., Paek, U. C., Lee, B. H., and Choi, E. S.,
“Miniature Fiber-Optic High Temperature Sensor Based on a Hybrid Structured
Fabry–Perot Interferometer” , Optics Letter, Vol. 3, No. 21, pp. 2455-2457
(2008)
[5] Yin, Z., Gao, L., Liu, S., Liu, S., Zhang, L., Wu, F., Chen, L., and Chen, X.,
“Fiber Ring Laser Sensor for Temperature Measurement” , Journal of
Lightwave Technology, Vol. 28, No. 23, pp.3403-3408 (2010)
[6] Jeong, Y., Sahu, J. K., Payne, D. N., and J. Nilsson, “Ytterbium-Doped
Large-Core fiber Laser with1.36 kW Continuous-Wave Output Power” , Optics
Express, Vol. 12, No. 25, pp. 6088-6092, 2004.
[7] Silva, A., Boller, K. J., and Lindsay, I. D., “Wavelength-Swept Yb-fiber Master
Oscillator Power Amplifier with 70nm Rapid Tuning Range” , Optics Express,
Vol. 19, No. 11, pp.10511-10517, (2011)
[8] Tang, M., Tian, X., Lu, X., Fu, S., Shum, P. P., Zhang, Z., Liu, M., Cheng, Y.,
and Liu, J., “Single-Frequency 1060 nm Semiconductor Optical Amplifier
Based Fiber Laser with 40 nm Tuning Range” , Optics Letters, Vol. 34, No. 14,
pp. 2204-2206 (2009)
[9] Peterka, P., Maria, J., Dussardier, B., Slavik, R., Honzatko, P., and Kubeckek,
V., “Long-Period Fiber Grating as Wavelength Selective Element in
Double-Clad Yb-Doped Fiber-Ring Lasers” , Laser Physics Letters, Vol. 6, No.
10, pp. 732-736 (2009)
[10] Kurkov, A. S., Paramonov, V. M., and Medvedkov, O. I., “Ytterbium Fiber
Laser Emitting at 1160 nm” , Laser Physic Letters, Vol. 3, No. 10, pp. 503-506
(2006)
[11] Zhang, L., Wang, J., Gu, X., and Feng, Y., “A Linearly-Polarized Tunable
Yb-Doped Fiber Laser Using a Polarization Dependent Fiber Loop Mirror” ,
Optics Communications, Vol. 285, No. 9, pp. 2410-2413 (2012)
[12] Guan, W., and Marciante, J. R., “Dual-Frequency Operation in a Short Cavity
Ytterbium-Doped Fiber Laser” , IEEE Photonics Technology Letters, Vol. 19,
101
No. 5, pp. 261-263 (2007)
[13] Feifei, Y., Sigang, Y., and Chen, H., “60-nm-Wide Tunable
Single-Longitudinal-Mode Ytterbium Fiber Laser with Passive Multiple-Ring
Cavity” , IEEE Photonics Technology Letters, Vol. 23, No. 22, pp. 1658-1660
(2011)
[14] Chang, C. L., and Wang, L., “A Dual Pumped Double-Pass L-band EDFA with
High Gain and Low Noise” , Optics Communications, Vol. 267, No. 1,
pp.108-112 (2006)
[15] Haleem, M. R., and Al-Manssori, M. H. “High Gain Double-Pass EDFA with
Dispersion Compensation as Feedback Loop” , Laser Physics, Vol. 21, No. 2,
pp. 419-422 (2011)
[16] Zhou, X., Lu, C., Shum, P., and Cheng, T. H., “A Simplified Model and
Optimal Design of a Multi-Wavelength Backward-Pumped Fiber Raman
Amplifier” , IEEE Photonics Technology Letters, Vol. 13, No. 9, pp. 945-947
(2001)
[17] Liu, Y., and Tangdiongga, E., “Error-Free 320-Gb/s All-Optical Wavelength
Conversion Using a Single Semiconductor Optical Amplifier” , Journal of
Lightwave Technology, Vol. 25, No. 1, pp. 103-108 (2007)
[18] Hwang, S., and Song, K. W., “Broad-Band Erbium-Doped Fiber Amplifier with
Double-Pass Configuration” , IEEE Photonics Technology Letters, Vol. 13, No.
12, pp. 1289-1291 (2001)
[19] Yeh, C. H., and Lee, C. C., “120-nm Bandwidth Erbium-Doped Fiber Amplifier
in Parallel Configuration” , IEEE Photonics Technology Letters, Vol. 16, No. 7,
pp. 1637-1640 (2004)
[20] Rosolem, J. B., and Juriollo, A. A., “S-C-L Triple-Band Double-Pass
Erbium-Doped Silica Fiber Amplifier with an Embedded DCF Module for
CWDM Applications” , Journal of Lightwave Technology, Vol. 24, No. 10, pp.
3691-3697 (2006)
[21] Lee, J. H., Chang, Y. M., and Han, Y. G., “Dispersion-Compensating
Raman/EDFA Hybrid Amplifier Recycling Residual Raman Pump for
Efficiency Enhancement” , IEEE Photonics Technology Letters, Vol. 17, No. 1,
pp. 43-45 (2005)
[22] Nicholson, J.W., “Dispersion Compensating Raman Amplifiers With Pump
Reflectors for Increased Efficiency” , Journal of Lightwave Technology, Vol. 21,
No. 8, pp. 1758-1762 (2003)
[23] Seo, H.S., Choi, Y.G., Park, B.J., Cho, D.H., and Kim, K.H., “Simultaneous
Amplification by Er ions and SRS in an Er-Doped Germano-Silica Fiber” ,
IEEE Photonics Technology Letters, Vol. 15, No. 9, pp. 1041-1135 (2003).
102
[24] Seo, H.S., Ahn, J.T., Park, B.J., Chung, W.J., “Double-Pass Resonant Er-Raman
Amplifier” , Electronics Letters, Vol. 43, No. 15, pp. 801-802(2007)
[25] Banerjee, A., Park, Y., Clarke, F., Song, H., and Yang, S.,
“Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON)
Technologies For Broadband Access: a Review” , Journal of Optical
Networking, vol. 4, No. 11, pp. 737-758 (2005)
[26] Lee, W., Park, M. Y., and Cho, S. H., “Bidirectional WDM-PON Based on
Gain-Saturated Reflective Semiconductor Optical Amplifiers” , IEEE Photonics
Technology Letters, Vol. 17, No. 11, pp. 2460-2462 (2005)
[27] Cho, K. Y., Takushima, Y., and Chung, Y. C., “10-Gb/s Operation of RSOA for
WDM PON” , IEEE Photonics Technology Letters, Vol. 20, No. 18, pp.
1533-1535 (2008)
[28] Al-Qazwini, Z., Thollabandi, M., and Kim, H., ”Colorless Optical Transmitter
for Upstream WDM PON Based on Wavelength Conversion” , Journal of
Lightwave Technology, Vol. 31, No. 6, pp. 896-902 (2013)
[29] Oh, J. M., Koo, S. G., Lee, D., and Park, S. J., “Enhancement of the
Performance of a Reflective SOA-Based Hybrid WDM/TDM PON System with
a Remotely Pumped Erbium-Doped Fiber Amplifier” , Journal of Lightwave
Technology, Vol. 26, No. 1, pp. 144-149 (2008)
[30] Lin, S. C., Lee, S. L., and Liu, C. K., “Design and Demonstration of
REAM-Based WDM-PONs with Remote Amplification and Channel Fault
Monitoring” , Journal of Optical Communications and Networking, Vol. 4, No.
4, pp. 336-343 (2012)
[31] Lee, J. H., Han, Y. G., and Lee, S. B., “Raman Amplification-Based
WDM-PON Architecture with Centralized Raman Pump Driven,
Spectrum-Sliced Erbium ASE and Polarization-Insensitive EAMs” , Optics
Express, Vol. 14, No. 20, pp. 9036-9041 (2006)
[32] Kim, C. H., Lee, J. H., and Lee, K., “Analysis of Maximum Reach in
WDM-PON Architecture Based on Distributed Raman Amplification and Pump
Recycling Technique” , Optics Express, Vol. 15, No. 22, pp. 14942-14947
(2007)
[33] Zhou, X., Lu, C., Shum, P., and Cheng, T. H., “A Simplified Model and Optimal
Design of a Multi Wavelength Backward-Pumped Fiber Raman Amplifier” ,
IEEE Photonics Technology Letters, Vol. 13, No. 9, pp.945-947 (2001)
[34] Kramer, G., Mukherjee, B., Pesavento, G., “IPACT a Dynamic Protocol for an
Ethernet PON (EPON)” , IEEE Communications Magazine, Vol. 40, No. 2, pp.
74-80 (2002)
103
[35] Huang, Q., Yeo, Y. K., and Zhou, L., “Combining Circuit and Packet Switching
Using a Large Port-Count Optical Cross-Connect For Data Center Networks” ,
Optics Communications, Vol. 285, No. 1, pp. 4268-4274(2012)
[36] Liaw, S. K., Tsai, P. S., Minh, H. L., Hsu, K. Y., and Tverjanovich,
A., ”Low-Crosstalk 3 × 3 Optical Cross-Connect Using Fiber Bragg Gratings” ,
Fiber Integrated Optics, Vol. 31, No. 4, pp. 229-236 (2012)
[37] Tran, A. V., Zhong, W. D., Tucker, R. S., and Song, K., “Reconfigurable
Multichannel Optical Add-Drop Multiplexers Incorporating Eight-Port Optical
Circulators and Fiber Bragg Gratings” , IEEE Photonics Technology Letters,
Vol. 13, No. 10, pp. 1100-1102 (2001)
[38] Chung, H. S., Chang, S. H., nd Kim, K., “Experimental Demonstration of
Layer-1 Multicast for WDM Networks Using Reconfigurable OADM” , Optical
Fiber Technology, Vol. 15, No. 5, pp. 431-437 (2009)
[39] Liang, T. C., Tsai, C. M., and Wu, B. C.,“A Wavelength Routing Device by
Using Cyclic AWGs and Tunable FBGs” , Optical Fiber Technology, Vol. 19,
No. 3, pp. 189-193(2013)
[40] Liaw, S. K., Hsieh, Y. S., Cheng, W. L., Chang, C. L., and Ting, H. F.,
“Bidirectional Reconfigurable Optical Add–Drop Multiplexer with Power
Compensation Built-In Optical Amplifiers” , Journal of Optical Networking,
Vol. 7, No. 7, pp. 662-671 (2008)
[41] Liaw, S. K., Huang, C. K., and Hsiao, Y. L., ”Parallel-Type C+L Band Hybrid
Amplifier Pumped by 1480 nm Laser Diodes” , Laser Physics Letters, Vol. 5,
No. 7, pp.543-546 (2008)
[42] Liaw, S.K., and Huang, Y. S., “C+L Band Hybrid Amplifier Using FBGs for
Dispersion Compensation and Power Equalization” , Electronics Letters, Vol.
44, No. 14, pp. 884-845(2008)
[43] Liaw, S. K., Dou, L., Xu, A., and Huang, Y. S., “Optimally Gain-Flattened and
Dispersion-Managed C + L-band Hybrid Amplifier Using a Single-Wavelength
Pump Laser” , Optics Communication, Vol. 282, No. 20, pp. 4087-4090 (2009)
[44] Ahmad, A., M., Mahdi, A. M., Md Ali, I., and Zamzuri, A. K., “Investigation of
Hybrid Gain-Clamped Raman-Fiber Amplifier/EDFA Utilizing Pump Reuse
Technique” , Laser Physics Letters, Vol. 5, No. 3, pp. 202-205 (2008)
[45] Iizuka, K., Elements of Photonics, John Wiley & Sons, New Jersey (2002)
[46] Hill, K.O., Fujii, Y., Johnson, D. C., and Kawasaki, B. S., “Photosensitivity in
Optical Fiber Waveguides: Application to Reflection Filter Fabrication” ,
Applied Physics Letter, Vol. 32, No. 10, pp. 647-649 (1978)
[47] Meltz, G., Morey, W. W., and Glemet, W. H., “Formation of Bragg in Optical
Fibers by a Transverse Holographic Method” , Optics Letter, Vol. 14, No. 15, pp.
104
823-825 (1989)
[48] Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C.
G., Putnam, M. A., and Friebele, E. J., “Fiber Grating Sensors” , Journal of
Lightwave Technology, Vol. 15, No. 8, pp. 1442-1463 (1997)
[49] Liaw, S. K., Jhong, G. S., Cho, L. T., and Chang, C. L., ”Implementation of
Tunable Erbium Doped Fiber Laser Using a Broadband Fiber Mirror” ,
Microwave and Optical Technology Letters, Vol.50, No.7, pp.1722-1724 (2008)
[50] Liaw, S. K., and Jhong, G. S., “Tunable Fiber Laser Using a Broadband Fiber
Mirror and a Tunable FBG as Laser-Cavity Ends” , IEEE Journal of Quantum
Electronics, Vol. 44, No. 6, pp. 520-527 (2008)
[51] Kashyap, R., Fiber Bragg Gratings, Elsevier, Montreal (2010).
[52] Kazovsky, L., Benedetto, S., and Willner, A., Optical fiber Communication
Systems, Artech House, Boston,(1996)
[53] 畢衛紅、張闖,「光纖Bragg 光柵的反射特性研究」,傳感器技術, 第22 期,
第8 卷, 2003
[54] Zhao, Y., Yu, C., and Y. Liao, “Differential FBG Sensor for Temperature
Compensated High Pressure (or Displacement) Measurement” , Optics and
Laser Technology, Vol. 36, No. 1, pp. 39-42 (2004)
[55] Islam, M. N., Raman amplifiers for telecommunications 1st Ed: Physical
Principles Islam, Springer, New York, USA, 2003.
[56] Vengsarkar, A. M., Lemaire, P. J., Judkins, J. B., Bhatia, V., Erdogan, T., and
Sipe, J. E., “Long-Period Fiber Gratings as Band-Rejection Filters” , Journal of
Lightwave Technology, Vol. 14, No. 1, pp. 58-65 (1996).
[57] Vengsarkar, A. M., Pedrazzani, J. R., Judkins, J. B., and Lemaire, P. J.,
“Long-Period Fiber-Grating-Based Gain Equalizers” , Optics letter, Vol.21, No.
5, pp. 336-338 (1996)
[58] Patrick, H. J., Williams, G. M., Kersey, A. D., Pedrazzani, J. R., and Vengsarkar,
A. M., “Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for
Strain/Temperature Discrimination” , IEEE Photonics Technology Letters, Vol.
8, No. 9, pp. 1223-1225 (1996)
[59] Dutton, H. J., Understanding optical communication, Prentice Hall, Research
Triangle Park, (1999)
[60] 陳宣臣,「波長可調光纖光柵之研製與應用」,國立台灣科技大學碩士論文,
台北(2004)。
[61] Pask, H. M., Carman, R.J., Hanna, D.C., Tropper, A.C., Mackechnie, C.J.,
Barber, P.R., and Dawes, J.M., “Ytterbium-Doped Silica Fiber Lasers: Versatile
Sources for The 1-1.2 μm Region” , IEEE Selected Topics in Quantum
Electronics, Vol. 1, No. 1, pp. 2-13 (1995)
105
[62] Allain, J. Y., Monerie, M., and, Poignant, H., “Ytterbium-Doped Fluoride Fiber
Laser Operating at 1.02 um” , Electronics Letter, Vol. 28, No. 11, pp. 988-989
(1992)
[63] Hanna, D. C., Percival, R. M. Perry, I. R., Smart, R. G., Suni, P. J., and Tropper,
A. C., “An Ytterbium-Doped Monomode Fiber Laser: Broadly Tunable
Operation from 1.010 μm to 1.162 μm and Three-level Operation at 974 nm” , J.
Mod. Opt., Vol. 37, No. 4, pp. 517-525 (1990)
[64] McCumber, D. E., “Theory of Phonon-Terminated Optical Masers” , Physical
review, Vol. 134, No. 2A, pp. A229-A306 (1964)
[65] Paschotta, R., Nilsson, J., and Barber, P. R., “Lifetime Quenching in Yb-Doped
Fiber” , Optics Communications, Vol. 136, No. 5, pp. 375-378 (1997)
[66] Urquhart, P., “Compound Optical-Fiber-Based Resonators” , Journal of the
Optical Society of America A, Vol. 5, No. 6, pp. 803-812 (1988)
[67] Das, G., and Chaboyer, Z. J., “Single-Wavelength Fiber Laser with 250mW
Output Power at 1.57μm” , Optics Express, Vol. 17, No. 10, pp. 7750-7755
(2009)
[68] Becker, P. C., Olsson, N. A., and Simpson, J. R., Erbium-Doped Fiber
Amplifiers: Fundamentals and Technology, Academic Press, Boston (1999)
[69] Michel, J. F., Rare-earth-doped fiber lasers and amplifier, Marcel Dekker, New
York (2001)
[70] Tucker, R. S., and Baney, D. M., “Optical Noise Figure: Theory and
Measurements” , Optical Fiber Communication Conference and Exhibit,
Anaheim, CA, USA, Wl1 (2001)
[71] Muro, R. D., Wilson, S. J., Jolley, N. E., Farley, B. S., Robinson, A., and Mun,
J., “Measurement of The Quantum Efficiency of Long Wavelength EDFAs with
and without an Idler Signal” , Optical Communications, Madrid, pp. 419- 420
(1998)
[72] Bromage, J., “Raman amplification for Fiber Communications Systems” ,
Journal of Lightwave Technology, Vol. 22, No. 1, pp. 79-93 (2004)
[73] Aoki, Y., “Properties of Fiber Raman Amplifiers and Their applicability to
Digital Optical Communication System” , Journal of Lightwave Technology,
Vol. 6, No. 7, pp. 1225-1239 (1998)
[74] Agrawal, G. P., Nonlinear Fiber Optics, Academic Press, London (2001)
[75] Beshr, A. H., Aly, M. H., ”Raman Gain and Raman Gain Coefficient for SiO2,
GeO2, B2O3 and P2O5 Glasses” , Radio Science Conference, Cairo, pp. 1-7
(2007)
[76] Jiang, S., Bristiel, B., Jaouen, Y., Gallion, P., Pincemin, E. and Capouilliet, S.,
“Full characterization of modern transmission fibers for Raman amplified-based
106
communication systems” , Optics Express, Vol. 15, No. 8, pp. 4883-4892
(2007)
[77] Born, M., and Wolf, E., Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light, Cambridge University Press,
UK (1999)
[78] Press, W. H., Numerical Recipes in C: the art of scientific computing,
Cambridge University Press, UK(1995)
[79] Wang, J., Zhang, L., Hu, J., Si, Lei, Chen, J., Gu, X., Feng, Y., “Efficient
Linearly Polarized Ytterbium-Doped Fiber Laser at 1120 nm” , Applied Optics,
Vol. 51, No. 17, pp. 3801-3803 (2012)

QR CODE